
Data & Knowledge Engineering 67 (2008) 51–73
Contents lists available at ScienceDirect

Data & Knowledge Engineering

journal homepage: www.elsevier .com/locate /datak
Value-based predicate filtering of XML documents q

Joonho Kwon a,*, Praveen Rao b, Bongki Moon c, Sukho Lee a

a School of Electrical Engineering and Computer Science, Seoul National University, Seoul 151-742, Republic of Korea
b Department of Computer Science and Electrical Engineering, and University of Missouri-Kansas City, Kansas City, MO 64110, USA
c Department of Computer Science, University of Arizona, Tucson, AZ 85721, USA
a r t i c l e i n f o

Article history:
Received 15 November 2007
Received in revised form 10 June 2008
Accepted 10 June 2008
Available online 27 June 2008

Keywords:
XML filtering
Value-based predicates
Prüfer sequences
0169-023X/$ - see front matter � 2008 Elsevier B.V
doi:10.1016/j.datak.2008.06.012

q This research was supported by the Ministry o
supervised by the Institute of Information Technolo

* Corresponding author. Tel.: +82 2 880 7299; fax
E-mail addresses: joonho@db.snu.ac.kr (J. Kwon)

1 We use the term user profiles, twig patterns and
a b s t r a c t

In recent years, publish–subscribe systems based on XML filtering have received much
attention in ubiquitous computing environments and Internet applications. The main chal-
lenge is to process a large number of content against millions of user subscriptions. Several
XML filtering systems focus on the efficient processing of structural matching of user sub-
scriptions represented as XPath twig patterns. However, existing techniques provide lim-
ited or no support for twig patterns that contain various operators in the value-based
predicates. In this paper, we present the pFiST system that filters XML documents by trans-
forming twig patterns into sequences based on Prüfer’s method. This sequencing idea for
XML filtering was first demonstrated by FiST [J. Kwon, P. Rao, B. Moon, S. Lee, FiST: scalable
XML document filtering by sequencing twig patterns, in: Proceedings of the 31st VLDB
Conference, Trondheim, Norway, 2005, pp. 217–228]. The focus of pFiST is to support
value-based predicates in twig patterns in addition to matching their structure. The pFiST
system supports equality and non-equality operators, and in addition can handle logical
operators such as AND and OR in the value-based predicates. Extensive experimental results
show that pFiST provides good performance over data sets with different characteristics.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Publish–subscribe (pub–sub) systems based on XML (Extensible Markup Language) document filtering play an important
role in Internet applications by enabling selective dissemination of information. In a typical publish–subscribe (pub–sub)
system, whenever new content is produced, it is selectively delivered to interested subscribers. This has enabled new ser-
vices such as alerting and notification services for users interested in knowing about the latest products in the market, cur-
rent affairs, stock price changes, etc. on a variety of devices like mobile phones, PDAs (Personal Digital Assistants) and
desktops. Such services necessitate the development of software systems that enable scalable and efficient matching of a
large number of content against millions of user subscriptions.

In XML filtering, user profiles are represented as twig patterns1 using XPath expressions [2]. Generally, a twig pattern spec-
ifies patterns of selection predicates on multiple elements that have some specified tree structured relationship in an XML doc-
ument [3]. Note that XML filtering is fundamentally different from XML query processing or pattern matching. The main goal of
XML query processing is to find specific parts within XML documents which match a query by building suitable indexes over
XML documents [3–7]. In XML filtering, the roles of twig patterns and documents are reversed – the twig patterns are indexed in
. All rights reserved.

f Knowledge Economy, Korea, under the Information Technology Research Center support program
gy Advancement (Grant Number IITA-2008-C1090-0801-0031).
: +82 2 883 8387.

, raopr@umkc.edu (P. Rao), bkmoon@cs.arizona.edu (B. Moon), shlee@snu.ac.kr (S. Lee).
queries interchangeably in the rest of the paper.

mailto:joonho@db.snu.ac.kr
mailto:raopr@umkc.edu
mailto:bkmoon@cs.arizona.edu
mailto:shlee@snu.ac.kr
http://www.sciencedirect.com/science/journal/0169023X
http://www.elsevier.com/locate/datak

Fig. 1. Three twig pattern queries with value-based predicates.

52 J. Kwon et al. / Data & Knowledge Engineering 67 (2008) 51–73
order to quickly determine if they contain a match in an input document. Formally the problem of XML filtering can be stated as
follows:

Given a set of twig patterns, find those patterns that appear in an input XML document.

Several XML filtering systems [8–14,1] focus on efficiently matching the structure of twig patterns. In our previous work
[1], we developed a novel XML filtering system called FiST (Filtering by Sequencing Twigs). FiST focused on holistic structure
matching of twig patterns without breaking them into several root-to-leaf paths and processing them individually. In addi-
tion, FiST focused on ordered twig pattern matching, which is useful for applications that require the nodes in a twig pattern
to follow the document order in XML.

However, existing solutions provide limited or no support for twig patterns that contain value-based predicates with var-
ious operators. Consider three twig pattern queries in Fig. 1. Each of these queries consists of four elements market, stock,
code and sell_price, and they share the same path expressions, namely, //market/stock/code and //market/stock/
sell_price. Although these three twig pattern queries have the same structure, they can be reported as matches to an
XML document only after their predicates are tested and are matched to the input document values.

Suppose that a document containing the stock price of HP is given to the system. If profile matching is done in top-down
fashion (as is done by most existing approaches such as YFilter [9]), then all three queries will pass the test based on the
structural part of queries, and the final match will be found only after checking against values-based predicates is completed.

To address this potential bottleneck in profile matching, we propose the pFiST (predicate enabled FiST) system to support
value-based predicates in twig patterns. pFiST is an extension of the FiST system [1] and can support structure matching as
well as value-based predicates in twig patterns. The value-based predicates are handled differently according to the opera-
tors in the twig patterns. Further logical operators such as AND and OR can be handled by pFiST. pFiST evaluates twig patterns
in a bottom-up fashion, which means that the value-based predicates are checked before the structure matching. Thus we
need not check the structure information of the first two twig patterns. Only the third twig pattern is tested and identified as
a match to the document. This shows that a bottom-up evaluation has an advantage of considering less twig patterns con-
taining value-based predicates.

The key contributions of this paper are summarized as follows:

� Value-based predicate processing: Our pFiST system provides a comprehensive solution to XML filtering by supporting the
evaluation of value-based predicates in twig patterns in addition to matching of their structures. Thus pFiST can be used
for a wide-variety of applications that require XML filtering.

� Comparison and logical operators in predicates: pFiST supports both equality operator (=) and non-equality operators
(<;>;<¼; >¼) in a value-based predicate. Further, logical-AND and logical-OR operators can be arbitrarily specified in
twig patterns and pFiST can process such twig patterns. These operators are handled by a simplification and decomposi-
tion approach.

� Experimental evaluation: For performance evaluation, extensive experiments were conducted over different data sets such
as NITF (News Industry Text Format) and Treebank. We compared pFiST with YFilter for equality predicates by varying the
size of input documents. Further, we evaluated the scalability and filtering time of pFiST for varying document sizes, vary-
ing twig patterns in terms of number, probability of operators/predicates, and selectivities. In addition, we measured the
memory usage of pFiST.

The rest of the paper is organized as follows. Related work is briefly discussed in Section 2. Section 3 explains background
for our work, and Section 4 gives an overview of the design of pFiST. We present the techniques for value-based predicate
processing in Section 5 and describe the extensions for processing logical operators in Section 6. Section 7 discusses the
results of our performance study. Finally, we conclude in Section 8.

2. Related work

The popularity of XML as a standard for information exchange has triggered several research efforts to build scalable XML
filtering systems. Existing approaches can be broadly classified into four categories namely (1) automaton-based approaches,
(2) index-based approaches, (3) sequence-based approaches and (4) other approaches.

Most of the previous approaches have been based on constructing automaton representations for user profiles [8–12,15].
XFilter [8] was one of the early works in XML filtering based on constructing a DFA (Deterministic Finite Automata) for user
profiles. YFilter [9] is a continual work of XFilter and uses a NFA (Non-deterministic Finite Automata) based approach for

J. Kwon et al. / Data & Knowledge Engineering 67 (2008) 51–73 53
shared processing of XPath expressions. Two approaches for processing value-based predicates were also studied. However,
YFilter handles predicates on attributes or text data of elements which contain only equality operators and does not support
AND/OR operators in value-based predicates.

There has been work on filtering using automata with buffers. XSM (XML Stream Machine) [10] adopted a transducer
based approach and used a subset of XQuery as a query language. To handle a subset of XQuery properly, the authors intro-
duced the use of internal buffers. However, XSM does not support the descendant axis in a query. A streaming XPath engine,
called XSQ [11], handles multiple predicates, closures, and aggregations by using a hierarchical network of pushdown trans-
ducers augmented with buffers. However, XSQ evaluates only one XPath expression at a time. XPush [12] proposed the use of
a modified deterministic pushdown automaton to simulate the execution of XPath filters and handle predicates.

More recently, Pfilter [15] was proposed for processing a special matching character ‘%’ in value-based predicates, which
is used by LIKE operator in SQL. For this reason, Pfilter extended YFilter by having two automata, one for structure matching
and the other for value-based predicates. However, Pfilter does not support range-value predicates and logical AND/OR oper-
ators in value-based predicates.

In the second category, there are also several approaches [13,14] that build an index for efficient filtering. A trie-based
data structure, called XTrie [13], was proposed to support filtering of complex twigs. XTrie indexes sub-strings of path
expressions that only contain parent–child operators, and shares the processing of only these common sub-strings among
the queries. XTrie focused only on structure matching. Bruno et al. [14] studied index-based and navigation-based XML mul-
ti-query processing and showed both techniques have their own advantages. However, they do not consider the queries that
contain value-based predicates.

In the third category, several filtering systems are included [1,16,17]. FiST [1] proposed the first sequence-based XML fil-
tering system which works in a bottom-up way by encoding XML documents and twig patterns into Prûfer sequences. Re-
cently, branch sequencing approach [16] and BoXFilter [17] were proposed. The branch sequencing approach avoids the
post-processing phase and it retrieves the matched nodes in a single parse of the document. BoXFilter is similar to FiST,
but introduces the idea of early pruning by grouping sequences into envelopes. However, all these sequence-based
approaches do not support the value-based predicates in twig patterns.

In the final category, there are also several approaches [18–22]. Tian et al. [18] proposed an XML-based pub–sub system
using a relational database system. A predicate-based filtering system [19] has been proposed that encodes XPath expres-
sions as ordered sets of predicates. A recent system called AFilter [20] exploits prefix and suffix commonalities in the set
of XPath queries. However, neither supports the value-based predicates in a twig pattern. Note that the meaning of predi-
cates in the predicate-based filtering system differs from that of predicates in twig patterns. The predicates translated from
an XPath query encode the relative position information of each two adjacent tags [19]. For example, an XPath query /a//b is
translated two predicates such as ðpa;¼;1Þ and ðdðpa; pbÞ;P;1Þ. The predicate ðpa;¼;1Þ represents a constraint on the posi-
tion of the tag a in the XPath query. The predicate ðdðpa; pbÞ;P;1Þ represents a constraint between the relative position of tag
‘b’ and tag ‘a’ and an ancestor–descendant relationship in the XPath query. More recently, Gou and Chirkova [21] have pro-
posed two stream-querying algorithms, LQ and EQ, which are based on lazy strategy and eager strategy, respectively. How-
ever, they focused on processing a single XPath expression at a time. Koch et al. [22] proposed a technique for efficient search
and navigation in XML documents by taking string matching algorithms. However, they assume that a nonrecursive schema
is available. Their system does not support non-equality operators.

Much work has been done in the area of XML query processing and pattern matching [3–7,23]. In XML query processing,
XML documents are indexed to quickly find all occurrences of a twig pattern. However, in XML filtering, the twig patterns
are indexed in order to quickly determine those that appear in an input document. Bruno et al. [3] proposed a holistic twig
pattern processing algorithm, called TwigStack. TwigStack achieves optimality for twig patterns with ancestor–descendant
relationships only. TJFast [4] was proposed to access only leaf elements by exploiting extended Dewey IDs. Twig2Stack [5]
is a bottom-up algorithm for processing twig queries based on hierarchical stack encoding. PRIX [7,24] proposed the use of
Prüfer sequences for XML indexing and twig query processing. However, the aforementioned approaches do not handle OR
operators in twig patterns. Jiang et al. [6] have studied the efficient processing of twig queries with OR predicates in the context
of XML indexing and query processing. FleXPath [23] is a framework that integrates structure and full-text querying in XML.
Structure conditions of queries are evaluated by an XPath engine and ‘‘contains” predicates are processed an IR (Information
Retrieval) engine. A materialized XPath views approach [25] was proposed for processing XML queries. The views may contain
copies of XML fragments and can be used to answer a user query containing XPath expressions. A semantic caching system,
called ACE-XQ [26], has been proposed to improve the query performance over XML documents in a distributed environment.
However, FleXPath, the materialized XPath views approach, and ACE-XQ system do not support multi-query evaluation.

We now describe some of the more recent work in publish–subscribe systems [27–30]. Massively multi-query join pro-
cessing (MMQJP) technique [29] was proposed for processing a large number of inter-document queries. Inter-document
queries join different XML documents based on the values in their nodes, either attributes or text. They proposed the
XML Stream Conjunctive Language (XSCL) which consists of three clauses: SELECT, FROM and PUBLISH. A piggyback optimi-
zation [27] was proposed for optimizing the performance of content-based dissemination of XML data. However, they only
considered a subset of XPath that uses only the child (‘‘/”) and descendant (‘‘//”) axes. Milo et al. [28] studied topic-based
publish–subscribe systems and proposed a novel technique for minimizing the maintenance overhead for topics. In topic-
based publish–subscribe systems, publishers and subscribers are connected together by a predefined topic. In XML filtering
systems, however, subscribers specify their interests through XPath queries. Published documents are matched against

54 J. Kwon et al. / Data & Knowledge Engineering 67 (2008) 51–73
XPath queries and delivered to the interested subscribers. Chandramouli et al. [30] proposed techniques for scalable process-
ing and dissemination of a large number of subscriptions with value-based notification conditions. However, the subscrip-
tions track the value of the same data item over time and this work does not deal with XML.

Our motivations. Most previous work on XML filtering focused on processing structural matches of twig patterns against incom-
ing XML documents. Some of the previous work support a limited form of value-based predicates in twig patterns. They do not
support non-equality operators and logical AND/OR operators in twig patterns. These shortcomings have motivated us to build
a comprehensive XML filtering system that evaluates value-based predicates in twig patterns and matches their structure
holistically.
3. Background

In this section, we describe the twig pattern queries supported by pFiST, explain how XML documents are processed by
the SAX parser, and describe how Prüfer sequences are generated from twig patterns.

3.1. Twig pattern queries supported by pFiST

A user profile (or twig pattern) is expressed using the XPath language [2]. XPath defines expressions for selecting nodes of
an XML document tree. Generally, a twig pattern specifies patterns of selection predicates on multiple elements that have
some specified tree structured relationship in an XML document [3].

Fig. 2 describes a subset of XPath supported by pFiST. This subset contains location path expressions as well as value-
based predicates. A location path is a structural pattern composed of sub-expression called step, joined by the ‘/’ or ‘//’, where
‘/’ denotes a child location step axis and ‘//’ denotes a descendant location step axis. A value-based predicate is an expression
that has comparison operators and logical operators and is evaluated with respect to the context node in an XPath expres-
sion. Comparison operators include equality (=) and non-equality operators (<;>;<¼; >¼) and logical operators include
AND/OR operators. Note that the NOT operator is not supported by pFiST. For example, //market/stock[code=HP OR code=
IBM AND sell_price > 25] is a valid XPath query for the grammar in Fig. 2.

3.2. SAX events for XML filtering

Incoming XML documents that need to be filtered are first parsed by a SAX (Simple API for XML) parser [31]. The SAX
parser generates a StartTagHandler event for each opening tag of an element and an EndTagHandler event for each closing
tag of an element. A Characters event reports a string, which is inside between a start tag and an end tag. A StartDocument
event and an EndDocument event are reported at the start and the end of an XML document.

Fig. 3 shows an example on how the SAX parser invokes five types of events when it parses an XML document. For example,
when the parser sees the start tag and the end tag of ‘c’, it invokes the start element event and the end element event, respec-
tively. When the parser sees the string ‘t1’, it invokes the characters event. The bold-faced events are explained in Section 5.3.

3.3. Prüfer sequences

Prüfer sequences provide a bijection between the set of labeled trees on n vertices and the set of sequences of length n� 2
on the labels 1 to n by removing nodes from the tree one at a time [32]. A simple iterative algorithm can be used to construct the
Prüfer sequence for tree Tn with n nodes labeled from 1 to n. The algorithm starts with an empty sequence. At each step, a leaf
node with the smallest label is deleted and the label of its parent node is appended to partial Prüfer sequences. After n� 2
Fig. 2. Grammar of XPath subset.

Fig. 3. SAX events example.

J. Kwon et al. / Data & Knowledge Engineering 67 (2008) 51–73 55
iterations, a single edge remains and we have produced a sequence of length n� 2. The sequence ða1; a2; a3; . . . ; an�2Þ is called
the Prüfer sequence of tree Tn, where ai is the label of the parent of a node with the ith smallest label.

The Labeled Prüfer Sequence (LPS) of an XML document tree is obtained by replacing the node numbers in the sequence
with XML tags [7,24]. Because the leaf nodes do not participate in the sequence, we used the extended Prüfer method by add-
ing a dummy child node to each leaf in the tree. In this paper, we use the term Prüfer sequence to refer to the extended LPSs.

Example 1. Consider a twig pattern in Fig. 4. The leaf nodes of the twig pattern are extended by adding dummy child nodes
d1 through d4. The nodes of the twig pattern are labeled in postorder. The Prüfer sequence of the twig pattern using the node
numbers is 2 10 4 10 6 9 8 9 10. The LPS of the twig pattern is B A C A G E F E A.

Algorithm 1 illustrates how Prüfer sequences are generated for an XML document using a SAX parser. When the Start-
TagHandler is invoked with a tag name, the tag name is pushed onto the stack as shown in Line 1. When the EndTagHan-
dler is invoked, the element tag is checked if it is a leaf node in the document. If it is a leaf node, the top element of the stack
is used as the next Prüfer sequence label, because a leaf node is considered to have a dummy child node for the purpose of
producing an extended LPS (Lines 2–3). Whether the tag is a leaf or not, the top element is popped from the stack (Line 4) and
the new top element is used as the next Prüfer sequence label (Line 5). The filtering algorithm FindSubsequence is explained
later in Section 4.

Algorithm 1: Prüfer sequences generation

stack S; /* a runtime global stack */
procedure StartTagHandler(tag)
1: S.push(tag)
end
procedure EndTagHandler(tag)
2: if tag is a leaf node then
3: FindSubsequence(S.top());

endif
4: S.pop();
5: FindSubsequence(S.top());
end
Fig. 4. Prüfer sequence for a twig pattern.

56 J. Kwon et al. / Data & Knowledge Engineering 67 (2008) 51–73
4. The proposed system

In this section, we present an overview of pFiST and describe the data structures and filtering algorithms. Note that pFiST
extends our earlier work on FiST to support value-based predicates, and thus shares the basic features of FiST.

4.1. Overview of pFiST

An architectural overview of core modules and the data flow in the pFiST system is shown in Fig. 5. Twig patterns (i.e.,
user profiles) are parsed by the XPath parser and converted into Prüfer sequences. The collection of Prüfer sequences is
stored in a hash-based dynamic index called Sequence Index. For each sequence, an auxiliary list called Profile Sequence is
maintained. The filtering engine progressively constructs the Prüfer sequence representation of an input XML document
and performs certain operations when the SAX parser events are invoked.

We have modified the FiST system to accommodate handling of values-based predicates. The simplification and decompo-
sition steps for a twig pattern with AND/OR operators are added into the XPath parser. The SAX events are enhanced for han-
dling value-based predicates. In addition, the Profile Sequence representation is extended to store the value-based predicates
and the subsequence matching step is modified to process value-based predicates. The details are explained in Sections 5 and
6. However, the refinement phase of FiST, that verifies branch node matches, remains unchanged, because the value-based
predicates cannot occur as branch nodes in the twig patterns.

4.2. Data structures

A twig pattern has a tree structure and its nodes have either parent–child or ancestor–descendant relationships. Each
twig pattern is converted into a Profile Sequence that consists of Sequence Nodes that maintain all the information in the
pattern. Each node in the Profile Sequence has four attributes namely label, qid, loc, and sym. The attribute label stores
the Prüfer sequence label, qid contains an unique identifier, and pos denotes the position of the node in the Profile Sequence.
The attribute sym stores a combination of values as follows:

� ‘/’ denotes a parent–child relationship.
� ‘//’ denotes an ancestor–descendant relationship.
� ‘$’ denotes a branch node.
� ‘#’ denotes the end node in the Profile Sequence.

Given a node q in the Profile Sequence, its four attributes are referred as qlabel; qqid; qloc and qsym, respectively.
Two sample twig patterns and their corresponding Profile Sequences are given in Fig. 6a. The first Sequence Node of Q 1

has a value ‘/’ due to a parent–child relationship with the second node. The first Sequence Node of Q2 has a value ‘//’ due to an
ancestor–descendant relationship with the second node. Q 1 has two branch nodes A and E, which have three and two child
nodes each. Thus the 2nd, 4th, 6th, 8th, 9th nodes have ‘$’ symbols in their sym attributes. Some branch nodes could have
two symbols at the same time. Since the 8th node of Q 1 has a parent relationship with the 9th node, it has two values ‘$’ and
‘/’. The last node in the Profile Sequence has value ‘#’.
Fig. 5. Architecture overview.

Fig. 6. Data structures.

J. Kwon et al. / Data & Knowledge Engineering 67 (2008) 51–73 57
A hash-based index called Sequence Index is maintained for efficient filtering of XML documents over twig patterns. The
Sequence Index is built over Profile Sequences. The label of a Sequence Node is used as a key in the hash table. With each key
in the index, the Sequence Index contains a list of nodes from Profile Sequences that need to be matched next. The notation
Q i;j denotes the jth Sequence Node of a twig pattern Qi.

Initially the first nodes of the Profile Sequences are added to the Sequence Index. The Sequence Index is updated dynam-
ically during the subsequence matching phase. When a new Prüfer sequence label of an input XML document is generated
during the subsequence matching phase, the nodes in the list corresponding to the label are examined depending on their
sym values. On a successful test, the next nodes in the corresponding sequences are inserted into the Sequence Index. When
the end of current document is reached, all nodes in Sequence Index will be removed except the first nodes of all the Profile
Sequences.

Fig. 6b shows the initial Sequence Index after inserting two twig patterns shown in Fig. 6a. The first nodes of the Profile
Sequences are added to the Sequence Index.

4.3. Filtering algorithm

The filtering algorithm of pFiST, which is an extension of the FiST system [1], also consists of two steps: progressive sub-
sequence matching and branch node verification. A complete description of the filtering algorithm is provided in our earlier
paper [1]. Here we briefly explain the main steps.

Conceptually, the first phase of the filtering algorithm involves subsequence matching between the profiles sequences
and the input document sequence in order to compute the superset of twig patterns that contain a match in the input doc-
ument. The following theorem states the relationship between the sequence representation of a twig pattern and an XML
document.

Theorem 1 [7]. If a query tree Q is a subgraph of a document tree T, then LPS(Q) is a subsequence of LPS(T).

Each time EndTagHandler is invoked, the top element of the stack indicates the ith element of the LPS of the document
and the filtering procedure FindSubsequence is invoked (see Algorithm 1). During the subsequence matching phase, pFiST
(similar to FiST) performs additional tests to eliminate most false matches by using the runtime stack.

The core filtering steps are shown in Algorithm 2. Using the label L as a key, the Sequence Index is searched to obtain the
list of nodes to be tested (Line 1.) For each node q in the list, an appropriate action is taken depending on the values in qsym

(Lines 4–6). The runtime stack allows parent–child and ancestor–descendant relationships to be tested during this phase.
StackTest procedure in Line 8 is used to check whether the relationship of q and q0 (the next Sequence Node of q) is satisfied
according to qsym by checking if it appears in the runtime stack. If a node q has a symbol ‘$’, then we store the matched tag to
facilitate the refinement phase (Lines 4 and 10). When a node q has a symbol ‘#’, the branch node verification step is invoked
to eliminate false matches. After the while loop, the next node of branch node (qsym has a ‘$’ symbol) is copied into the
Sequence Index (Line 12).

Example 2. We demonstrate the execution of the filtering algorithm with an XML document T and two twig patterns in Fig.
7. When FindSubseqeunce(C) is invoked, the state of runtime global stack is shown in Fig. 7. First, we obtained the node
Q2;1 in the Sequence Index for key C. Because the value of Q2;1sym is ‘/’, the StackTest(Q2;2, Q2;2, ‘/’) is called. Because the
label A is one element below the label B, the StackTest is successful. Q2;2 is a branch node, so the next node Q2;3 is added to
the Sequence Index using hash key D because the label of Q2;3 is D. Fig. 7c shows the changes during the subsequence
matching.

Fig. 7. An illustration of the filtering process.

58 J. Kwon et al. / Data & Knowledge Engineering 67 (2008) 51–73
Theorem 1 guarantees having no false dismissals but it is possible to have false positives because the Labeled Prüfer Se-
quence does not consider the structural features of neither the query nor the XML document. Therefore, the second phase,
branch node verification, is needed to discard false matches after checking the connectedness property for branch nodes in
twig patterns.

Example 3. Consider the XML document T and twig patterns in Fig. 7. The Prüfer sequences of the document, LPS(T), is ‘‘C B A
D B A C A G E F E A”.2 The Prüfer sequences of twig patterns Q1 and Q2, denoted by LPSðQ1Þ and LPSðQ2Þ, are ‘‘B A C A G E F E
A” and ‘‘C B D B A”. Two queries are identified as candidate matches for the document during the first step, because LPSðQ1Þ
and LPSðQ2Þ are both subsequences of LPS(T). Underlines in labels of LPS(T) show the subsequence for LPSðQ2Þ. The twig
pattern Q2 is discarded after branch node verification, since the first ‘B’ is matched to the first occurrence which is denoted as
(B,2) in the document and the second ‘B’ is matched to the second occurrence denoted as (B,4).
5. Value-based predicate processing

In this section, we present our filtering scheme for value-based predicate processing. First, we describe observations for
processing value-based predicates. Next, we propose the data structures for twig patterns containing value-based predicates.
Two alternative representations for value-based predicates are proposed according to the observations. Then, we explain
how the values in an XML document are used in the filtering algorithm to handle value-based predicates. To simplify the
presentation, our discussion in this section focuses on the twig patterns that do not involve logical operators. We will present
the techniques to support logical operators in Section 6.
2 Spaces between labels are inserted for clarity.

J. Kwon et al. / Data & Knowledge Engineering 67 (2008) 51–73 59
5.1. Observation

For processing value-based predicates in twig patterns and XML documents, we have observed the following
characteristics:

(1) When a SAX parser parses an XML document, the value is located between a start tag and an end tag and is delivered
in the ‘‘characters” event.

(2) The value and its parent start tag in the XML document can be interpreted as having a parent–child relationship with
an equality operator.

(3) Values in twig patterns have two modes, whereas the values in XML documents have only one mode. The value in the
XML document is always an exact mode with an equality operator. However, the values of predicates in a twig pattern
could have a range mode when non-equality operators appear in predicates.

Example 4. Consider an XML document in Fig. 3. A value ‘‘t1” is located inside its parent tag ‘‘c”. This means that the tag ‘‘c”
and the value ‘‘t1” have a parent–child relationship with an equality operator and the value ‘‘t1” is a value in exact mode.
Consider a twig pattern Q4 in Fig. 9a. The value of ‘‘5” in the twig pattern can be considered as a value in the range mode
because of the ‘‘<” operator.

The values in the exact modes appears in both documents and twig patterns. We can transform these values into the la-
bels of Prüfer sequences and process them in the same manner as the tags at the subsequence matching step. However, the
values in the range modes appear only in twig patterns. In addition, we lose the information of non-equality operators if we
transform only these values into the labels of Prüfer sequences. Thus, we need to treat values in twig patterns differently
according to the operators.

5.2. Handling predicates in twig patterns

The basic idea of handling value-based predicates with equality operators is to treat value-based predicates as tag ele-
ments in twig patterns. Thus when the twig pattern is transformed into the Prüfer sequence representation, an independent
sequence node for the value-based predicate is generated. This means the values in the exact mode become parts of the
structure matching.

Fig. 8 shows a twig pattern Q 3 and its Profile Sequence. Q3 has two value-based predicates with values ‘‘t1” and ‘‘10”,
which have equality operators. The 1st and 4th sequence nodes are generated for these predicates in the Profile Sequence.
Attributes label; qid; loc and sym of each sequence node have appropriate values explained in Section 4.2. These sequence
nodes are processed in the same manner as the nodes for elements during the subsequence matching.

To process value predicates with non-equality operators, the sequence nodes need not be generated in the Profile Se-
quence. Instead, the value-based predicate information containing the value and the operator is added to the sequence node
which is a parent node of the predicate. We do not generate an independent sequence node, because the range value cannot
be used as a key to look up the Sequence Index.

Each predicate information is a 3-tuple (Op,val,Type), where:

� Op denotes an operator.
� val is the value of a value-based predicate.
� Type is an integer value for the type of val, which is determined as follows: 0 for a string type, 1 for a float type and 2 for an

integer type.

Given a node q in the Profile Sequence, the predicate information is denoted by qpi.

Example 5. Fig. 9 depicts a twig pattern Q4 and its Profile Sequence. There are two value-based predicates ‘‘c ¼ t1” and
‘‘d < 5” in Q4. Because the first predicate ‘‘c ¼ t1” has a value in exact mode due to the equality operator, the first node for
value ‘‘t1” is generated in the Profile Sequence. However, the second predicate ‘‘d < 5” has a value in the range mode due to
Fig. 8. Predicates with equality operators.

Fig. 9. Predicates with non-equality operators.

60 J. Kwon et al. / Data & Knowledge Engineering 67 (2008) 51–73
the non-equality operator. Thus the predicate information (<, 5, 2) is added to the 4th sequence node in the Profile
Sequence.
5.3. Algorithms for processing value-based predicates

To handle the values (i.e., predicates) in an XML document, we enhanced SAX events and the subsequence matching func-
tion. Algorithm 3 shows SAX events, StartTagHandler EndTagHandler and Characters, which accommodate the filter-
ing algorithm capable of processing value-based predicates. Algorithm 4 shows the PredTest procedure for processing
value-based predicates. The FindSubsequence procedure in Algorithm 2 needs to be extended taking two parameters
and to be augmented by inserting the PredTest procedure.
Algorithm 3: SAX handlers for processing value-based predicates
stack S;
 /* a runtime global stack */

string Pred;
 /* a string for the value predicate */

procedure StartTagHandler(tag)

1: S.push(tag)

2: foreach attribute attr in tag do

3: FindSubsequence(attrvalue, Null);
 /* exact mode */

4: FindSubsequence(attrname; attrvalue);
 /* range mode */
endfch

end

procedure Characters(value)

5: Pred value

6: FindSubsequence(Pred, Null);
 /* exact mode */

end

procedure EndTagHandler(tag)

7: if tag is a leaf node then

8: FindSubsequence(S.top(), Pred);
 /* range mode */

9: Pred Null;
endif

10: S.pop();

12: if Pred is Null then FindSubsequence(S.top(), Null);
 /* exact mode */

13: else FindSubsequence(S.top(), Pred);
 /* range mode */

14: Pred Null;
end
In the StartTagHandler procedure, an opening tag in an XML document is stored in a runtime global stack. The runtime
global stack is used during the subsequence matching. The values of an attributes are processed within this function. The
FindSubsequence procedure is invoked twice. The first call in Line 3 is for the values in the exact mode, where the value
of attribute ðattrvalueÞ is used as a key to look up the Sequence Index. The second call in Line 4 is for the values in the range
mode, where attribute name ðattrnameÞ is used as a key to look up the Sequence Index and the value of attribute ðattrvalueÞ is
compared to the predicate information of a Sequence Node.

The Characters procedure handles values in the exact mode by calling the FindSubsequence procedure in Line 6. For
processing values in the range modes of twig patterns, the bookkeeping for the value is done in Line 5. This value is used in
the EndTagHandler procedure.

J. Kwon et al. / Data & Knowledge Engineering 67 (2008) 51–73 61
In the EndTagHandler procedure, the FindSubsequence procedure is also invoked twice. The FindSubsequence proce-
dure in Line 8 is used to check value-based predicates with equality operators, whereas theFindSubsequenceprocedure in Line
12 is used to check value-based predicates with non-equality operators. The stored string is reset to NULL after it is processed.

Algorithm 4 shows the PredTest procedure which performs the comparison between predicate information (qpi) and a
string ðstrÞ. The predicate information is obtained from a Sequence Node and a string is passed by the SAX handlers in Algo-
rithm 3. If a str is NULL, nothing needs to be done (Line 1). Function Eval(pival; op; val) in Line 4 returns true if the relation-
ship between values pival and val satisfies the operator op.

For processing value-based predicates, FindSubsequence in Algorithm 2 should be extended as follows. First, the ex-
tended FindSubsequence procedure takes two input parameters as shown in Algorithm 3. The first parameter (i.e., tag)
is used as a key to lookup the Sequence Index. The second parameter (i.e., str) is used when the predicate information of
Sequence Nodes in the current lists are checked. Second, the extended FindSubsequence procedure can be augmented
by inserting the PredTest procedure before checking structure information of a twig pattern (Line 3 in Algorithm 2).

As for the augmentation, it is an easy task for pFiST because pFiST evaluates twig patterns and XML documents in a bot-
tom fashion. However, it is a difficult to augment YFilter and other approaches by inserting PredTest procedure since they
process twig patterns and XML documents in a top-down fashion.
Fig. 10. Value-based predicate processing.

Fig. 11. Changes in Sequence Index during filtering.

62 J. Kwon et al. / Data & Knowledge Engineering 67 (2008) 51–73
We illustrate the execution of filtering algorithm with the XML document in Fig. 3a and twig patterns Q3 and Q4 in Figs. 8
and 9. The sequence of SAX events is also shown in Fig. 3a, however, we focus on some SAX events with bold-faced fonts in
this example.

Example 6. Fig. 10 shows the changes in the global stack and main comparisons between the stack and twig patterns during
filtering.

FindSubsequence(t1, Null) is invoked in Characters(t1) event. The current nodes Q3;1 and Q4;1 of the Sequence
Index are obtained by using hash key ‘‘t1”. Since the second parameter is Null, the PredTest procedure is skipped. The
dotted regions of twig patterns Q3 and Q4 are compared to the stack. At the end of FindSubsequence(t1), we found that
both Q3 and Q4 are passed successfully. Thus the 4th sequence nodes of Q3 and Q4 are copied to the Sequence Index using
the label ‘‘10” and ‘‘d” as keys, respectively. This is shown in Fig. 11.

In Characters(10) event, FindSubsequence(10, Null) is invoked and the current node Q3;4 of the Sequence Index is
obtained by using hash key ‘‘10”. After a comparison between the stack and the dotted region of Q3;Q3 is identified as a
match to the document.

In EndTagHander(d) event, FindSubsequence(d,10) is called for values in the range mode. The tag ‘‘d” is used to
search the Sequence Index in Fig. 11. Q4;4 existed in the current list. Since the second parameter is not Null, the PredTest is
performed using the value of ‘‘10” and predicate information (<,5,2) of Q4;4. At this step, Q4;4 fails to satisfy the predicate
information.
6. Extensions

Queries in many real applications may contain logical-AND and logical-OR operators. In pFiST, when we transform twig
patterns with AND/OR operators into Prüfer sequences, we avoid storing these operators as part of these sequences. To cap-
ture the semantics of these operators we propose a decomposition approach for OR operators and a simplification approach
for AND operators.

6.1. Notations

We represent a twig pattern with logical operators as a tree containing two types of nodes namely (a) location step node
(LNode) and (b) predicate node (PNode). A location step node (LNode) has a’/’ or ’//’ axis with a tag name for node test. A pred-
icate node (PNode) contains a value-based predicate of a query and the ‘‘AND/OR” operators including brackets ‘[’ and ‘]’. Fig.
12 shows the tree representation for a twig pattern Q5. An LNode is denoted by a circle and a PNode is denoted by a
rectangle.

The above notations are similar to those introduced by Jiang et al. [6] for XML query processing.
Fig. 12. Tree representation.

J. Kwon et al. / Data & Knowledge Engineering 67 (2008) 51–73 63
6.2. Predicates with OR operators

A decomposition approach is used by pFiST to handle a twig pattern with OR operators. The key idea is to split a twig
pattern with OR-predicates into multiple twig patterns without OR-predicates. Although the number of twig patterns stored
in the Sequence Index increases due to the decomposition of a query, the subsequence matching algorithm can be applied
without any modifications.

As described in Algorithm 5, the steps for decomposing a twig pattern with OR operators are quite straightforward. Suppose
a predicate in a twig query is in disjunctive normal form. If the number of OR operators in the predicate is k, the structural por-
tion of the query (i.e., LNodes) will be replicated ðkþ 1Þ times, and each of the ðkþ 1Þ replicated queries will be given one of the
ðkþ 1Þ conjunctive terms for its predicate. Generally, if a twig pattern query comes with n predicates p1; . . . ; pn with
ki ð1 6 i 6 nÞ OR operators each, then the structural portion of the query will be replicated ðk1 þ 1Þ � ðk2 þ 1Þ � � � � �
ðkn þ 1Þ times. Each of the replicated queries will then be given one of the ðki þ 1Þ conjunctive terms for the ith OR-predicate
pi for each i ð1 6 i 6 nÞ. See the examples below for illustration of query decomposition.

Algorithm 5: Decomposition of twig patterns with OR operators

Input: {q} – q is a twig pattern having OR operators;
procedure Decomposition(q)
1: if q is in disjunctive normal form then
2: num 1 + # of OR operators in q;

else
3: num ðk1 þ 1Þ � ðk2 þ 1Þ � � � � � ðkn þ 1Þ when q has n predicates p1; . . . ; pn with ki ð1 6 i 6 nÞ OR operators each;

endif
4: foreach PNode p of q do
5: LNode l the parent node of p;
6: add all nodes of q except p to List;
7: remove p from l;
8: delete OR operators and brackets such as ‘[’ and ‘]’ in p;
9: create twig patterns to the value of num by copying the nodes from List
10: for i ¼ 1 to num do
11: Add ith expression e to LNode l as a child node for the ith twig pattern;

endfor
endfch

end

Example 7. Fig. 13 shows the decomposition of twig pattern Q6 whose predicate is represented in disjunctive normal form.
After applying the decomposition algorithm, Q6 is decomposed into four twig patterns namely Q6 1;Q6 2;Q6 3 and Q6 4. The
twig pattern Q6 2 can be simplified because it contains an AND operator. (The simplication of AND operators is discussed in
the following section.) Fig. 14 shows the decomposition of a twig pattern with multiple predicates. A twig pattern Q7 is
decomposed into the four twig patterns such as Q7 1;Q7 2;Q7 3 and Q7 4.
Fig. 13. Decomposition of a twig pattern with OR operators in disjunctive normal form.

Fig. 15. Simplified twig pattern for Q5 after removing the AND operator.

Fig. 14. Decomposition of a twig pattern with multiple predicates.

64 J. Kwon et al. / Data & Knowledge Engineering 67 (2008) 51–73
6.3. Predicates with AND operators

A simplification method is used by pFiST to handle a twig pattern with AND operators. The key idea of simplification can
be understood using the following example. A predicate [e1 AND e2] in a twig pattern has the same semantics as that of hav-
ing two successive predicates ½e1� and ½e2�. Thus we translate the predicates with AND operators of a LNode into a set of suc-
cessive predicates of the same LNode without AND operators. After simplification of twig patterns, we can apply the filtering
algorithm without any modifications.

The steps for simplifying a twig pattern with AND operators are given in Algorithm 6. For each PNode p of a twig pattern,
the parent LNode l of p is identified and p is removed from l (Lines 2 and 3). After deleting AND operators and brackets such
as ‘[’ and ‘]’ (Line 4), the expressions in p are enumerated (Line 5). Each expression is inserted as a child of LNode l which is a
parent node of the PNode p (Line 6). In other words, the expressions become successive predicates of the parent node.

Algorithm 6: Simplification

Input: {q} – q is a twig pattern having AND operators;
procedure Simplification(q)
1: foreach PNode p of the twig pattern q dol
2: LNode l the parent node of p;
3: remove p from l;
4: delete AND operators and brackets such as ‘[’ and ‘]’ in p;
5: foreach expression e in p do
6: Add the expression e with brackets into l as the child node;

endfch
endch

end

Example 8. Fig. 15 shows the twig pattern obtained after simplification of Q5 in Fig. 12. Two expressions in the PNode
become children of the LNode ‘/b’.

Table 1
Characteristics of DTDs

Name Number of distinct tags Max. depth of document

NITF 123 10

J. Kwon et al. / Data & Knowledge Engineering 67 (2008) 51–73 65
Treebank 250 20
7. Experimental results

In this section, we present the results of some experiments to analyze the performance of value-based predicate filtering.

7.1. Experimental setup

7.1.1. Data sets and twig patterns
In our experiments, we used two different data sets: NITF and Treebank. NITF is an XML-based DTD designed for the

markup and delivery of news content [33]. Treebank is an XML-based encoding format for the representation of linguistic
corpora [34]. Features of the data sets are shown in Table 1. The first column shows the number of distinct tags in XML doc-
uments. The second column shows the maximum depth of XML documents. NITF is rather shallow, while Treebank is deeper
and has many recursions in elements.

To test the system, we required generators for both documents and queries. For documents, we generated the data sets
from the NITF and Treebank DTDs using a modified version of the IBM’s XML Generator [35]. We introduced the parameter
MaxValue which determines the number of values that the data of elements and attributes of elements can take. We used the
default values for the other parameters.

In each data set, documents were grouped by their sizes in bytes. In subsequent discussions, these document groups will
be referred to as ‘‘5k”, ‘‘10k”, ‘‘20k” and ‘‘30k”. Each document group contained 200 XML documents, and all the reported
experimental results were averaged over the entire set of documents.

To generate twig patterns expressed in the XPath language, we used a modified version of the XPath generator from the
YFilter package [9]. The characteristics of the parameters and their values used to generate twig patterns as workload are
summarized in Table 2. The parameter L bounds the maximum depth of the twig pattern and is set to 6 for NITF and 10
for Treebank. We varied the twig patterns that were indexed by the filtering system from 50,000 to 150,000 in steps of
25,000. The number of value-based predicates was varied from 1 to 4. The parameters pp; pe; pn and po determine the prob-
ability of predicates, an equality operator, a non-equality operator and an OR operator in each twig pattern, respectively. The
parameter h controls the skewness of the Zipf distribution [36] used for selecting element names and data values. The ele-
ment names and data values were chosen from uniform distribution at the value of 0. Otherwise, the choice of the element
names and data values was skewed according to the value of h.

7.1.2. Environments
All experiments were performed on a 2.4 GHz Pentium IV machine with 512 MB memory running Linux. The pFiST code

was compiled with GNU g++ compiler version 3.3.2.

7.2. Effect of equality operators

In this experiment, we compare our algorithms with the YFilter system [9] which is the most popular XML filtering tech-
nique. Since traditional XML filtering systems have focused on processing structure matching of twig patterns, we chose YFil-
ter, as it has been also shown to support value-based predicates. However, YFilter supports only equality operators on
attributes and text data in value-based predicates, hence we generate twig patterns containing only equality operators.
The effects of other operators will be analyzed in Section 7.3.

When pFiST was compared with YFilter, their performance trends were measured in scaleup for fair comparison, which
was used in [1]. This is because YFilter (obtained from the University of California at Berkeley) is implemented in Java, while
Table 2
Parameters for synthetic twig patterns

Parameter Description Values

Nt Number of twig patterns 50,000–150,000
Np Number of value-based predicates in a twig pattern 1–4
L Maximum depth of a twig pattern 6 or 10
pp Probability of predicates 0.6–1.0
pe Probability of an equality operator 0.0–0.5
pn Probability of a non-equality operator 1� pe

po Probability of an OR operator 0.0–0.5
h Skewness of element names and data values 0.0–1.0

66 J. Kwon et al. / Data & Knowledge Engineering 67 (2008) 51–73
pFiST is implemented in C++ with Xerces XML Parser version 2.5.0 [37]. To measure the scaleup performance, we used the
following formula:
scaleup ¼ tAvg � tAvgbase

x� xbase
; ð1Þ
where tAvg is the filtering time measured for the case under observation at x and tAvgbase is the filtering time measured for
the base case at xbase. We assume that the x-axis grows in steps of 1 for all aspects of scalability.

7.2.1. Varying sizes of input XML documents
We measured the scalability of the system as the sizes of XML documents. The results are summarized in Fig. 16. Along

the x-axis, we show the increase in the documents sizes by using data sets ‘‘10k”, ‘‘20k” and ‘‘30k”. The scaleup of YFilter
grew quicker than that of pFiST indicating that YFilter’s filtering cost increased much faster than pFiST. We also observed
that the gap in the scaleup between YFilter and pFiST was widened as the size of the documents and the number of va-
lue-based predicates per twig pattern (Np) were increased. These results demonstrate that pFiST scales better then YFilter,
as the document sizes and Np increase.

7.3. Effect of various operators

Existing techniques such as YFilter do not support non-equality operators and AND/OR operators. Thus due to the lack of a
comparable system, we only present the performance evaluation of pFiST for various twig patterns containing different
operators.
0

1

2

3

4

5

6

7

8

9

30k20k10k

S
ca

le
up

Sizes of documents

YFilter,Np=1
YFilter,Np=2
YFilter,Np=3
pFiST,Np=1
pFiST,Np=2
pFiST,Np=3

0

1

2

3

4

5

6

7

8

9

30k20k10k

S
ca

le
up

Sizes of documents

YFilter,Np=1
YFilter,Np=2
YFilter,Np=3
pFiST,Np=1
pFiST,Np=2
pFiST,Np=3

(a) NITF (b) Treebank

Fig. 16. Varying sizes of input documents.

0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

150,000125,000100,00075,00050,000

F
ilt

er
in

g
tim

e(
se

c)

No. of twig patterns

Np=1
Np=2
Np=3
Np=4

0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

150,000125,000100,00075,00050,000

F
ilt

er
in

g
tim

e(
se

c)

No. of twig patterns

Np=1
Np=2
Np=3
Np=4

(a) NITF (b) Treebank

Fig. 17. Varying the number of twig patterns when the number of value-based predicates is varied from 1 to 4 for each twig patterns.

J. Kwon et al. / Data & Knowledge Engineering 67 (2008) 51–73 67
7.3.1. Varying the number of twig patterns
We measured the scalability of the system as the number of twig patterns and the number of value-based predicates in

each twig pattern increase. Fig. 17 shows the filtering time for various number of twig patterns. The filtering time for both
NITF and Treebank data sets grew as the number of twig patterns increase. We observed that the filtering time grew slowly
as the number of value-based predicates increased. If the number of value-based predicates is large, the number of candidate
twig patterns is reduced during the subsequence matching, and this yields a decrease in the filtering time.

7.3.2. Varying sizes of input XML documents
We measured the scalability of the system by varying the sizes of input XML documents. The results are summarized in

Fig. 18. Along the x-axis, we show the increase in the documents sizes by using data sets ‘‘5k”, ‘‘10k” and ‘‘20k”. For each of
the plots, the number of predicates per twig pattern (Np) is varied from 1 to 3. The filtering time of both NITF and Treebank
data sets grew linearly as the sizes of documents increase. We also observed that filtering time grew more slowly as the
number of predicates increased.

7.3.3. Varying the number of value-based predicates
In this experiment, we investigate the performance advantage of the pFiST system as the number of predicates per twig

pattern is increased. Fig. 19 summarizes the filtering time as the number of predicates is varied. The number of twig patterns
is fixed to 150,000. Let us analyze the results shown in Fig. 19. The filtering time for both data sets displays a downward
trend. This is consistent with the trend in Fig. 17. The number of branches is increased as the number of predicates are in-
creased, which causes smaller number of candidate twig patterns. This explains the downward tendency.

Another observation from Fig. 19 is that the filtering time of NITF data set decreased considerably, whereas that of
Treebank decreased slightly. The reason is explained from the characteristics of data sets. As shown in Table 1, NITF data sets
0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

4321

T
im

e(
se

c)

Number of predicates per twig pattern

20k
10k

5k

0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

4321

T
im

e(
se

c)

Number of predicates per twig pattern

20k
10k

5k

(a) NITF (b) Treebank

Fig. 19. Varying the number of predicates when the number of twig pattern is fixed to 150,000.

0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

20k10k5k

W
al

l c
lo

ck
 ti

m
e

(s
ec

s)

size of documents

150000,Np=1
150000,Np=2
150000,Np=3
125000,Np=1
125000,Np=2
125000,Np=3

0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

20k10k5k

W
al

l c
lo

ck
 ti

m
e

(s
ec

s)

size of documents

150000,Np=1
150000,Np=2
150000,Np=3
125000,Np=1
125000,Np=2
125000,Np=3

(a) NITF (b) Treebank

Fig. 18. Varying sizes of input documents.

68 J. Kwon et al. / Data & Knowledge Engineering 67 (2008) 51–73
have a smaller number of elements in twig patterns than Treebank data sets. Therefore, NITF data sets are affected more con-
siderably than Treebank data sets in terms of the number of value-based predicates.

7.3.4. Varying the probability of equality operators
To see the effect of the probability of an equality operator, we conducted experiments varying the probability from 0.1 to

0.5. We assumed that pe þ pn ¼ 1. Thus the lower probability of an equality operator means the higher probability of non-
equality operators. We set all the parameters to default values except pe and pn.

Fig. 20 shows the results for the case when the probability of the equality operator in each query has varied. As the prob-
ability of the equality operator increases, the filtering time is decreased. It is due to the fact that the chance to be the can-
didate match during the subsequence matching is reduced as the twig pattern has a large number of equality operators in
value-based predicates.

7.3.5. Varying the probability of predicates
In this experiment, we have measured the influence of selectivity of value predicates. In order to focus on the effect of

selectivity of predicates, first we generate the twig pattern by setting the probability of predicates (pp) to 1.0. Then, we de-
leted some value-based predicates of twig patterns according to the probability of predicate. Thus twig patterns used in
these experiments have the same structures and have different value-based predicates. By changing the probability of pred-
icates, we can see the effect of selectivity of value predicates.

We observed a downward trend in the filtering time as the probability of predicates decreased in Fig. 21 and also ob-
served that more significant changes occurred in the filtering time for Treebank than NITF. This is explained from Table 3.
Average number of matched twig patterns decreased as the probability of predicate decreased. This explains the downward
trend in the filtering time. In addition, the reduction rate of Treebank is more severe than that of NITF. This difference caused
the significant decrease in the filtering time for Treebank.
 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0.01

0.50.60.70.80.9

T
im

e(
se

c)

Probability of predicates

20k
10k

5k

0

 0.02

 0.04

 0.06

 0.08

 0.1

0.50.60.70.80.9

T
im

e(
se

c)

Probability of predicates

20k
10k

5k

(a) NITF (b) Treebank

Fig. 21. Varying the probability of predicates when the number of twig pattern is fixed to 150,000.

0

 0.05

 0.1

 0.15

 0.2

0.50.40.30.20.1

T
im

e(
se

c)

Probability of equallity operators

20k
10k

5k

0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

0.50.40.30.20.1

T
im

e(
se

c)

Probability of equallity operators

20k
10k

5k

(a) NITF (b) Treebank

Fig. 20. Varying the probability of equality operators when the number of twig pattern is fixed to 150,000.

Table 3
Average number of matched twig patterns to input documents

Probability of predicates NITF Treebank

5k 10k 20k 5k 10k 20k

0.9 291.235 324.92 391.88 1818.1 2675.51 3474.55
0.8 267.95 302.15 364.46 1485.94 2187.72 2840.87
0.7 253.19 282.395 339.07 1218.03 1788.92 2325.93
0.6 219.285 248.58 299.895 968.32 1422.71 1865.26
0.5 202.245 225.805 269.775 752.13 1101.38 1450.61

0

 0.05

 0.1

 0.15

 0.2

1.00.80.60.40.20.0

T
im

e(
se

c)

Varying skewness of elements/data

20k
10k

5k

0

 0.1

 0.2

 0.3

 0.4

 0.5

1.00.80.60.40.20.0

T
im

e(
se

c)

Varying skewness of elements/data

20k
10k

5k

(a) NITF (b) Treebank

Fig. 22. Varying the skewness of element names and data values when the number of twig pattern is fixed to 150,000.

J. Kwon et al. / Data & Knowledge Engineering 67 (2008) 51–73 69
7.3.6. Varying the skewness of elements names and data values
To see the effect of distribution of elements names and data values, we conducted experiments varying the skewness

parameter h from 0.0 to 1.0. Note that the element names and data values of twig patterns are chosen according to the skew-
ness parameter, but those of XML documents are uniformly selected. Fig. 22 shows the results. The graphs show that the
performance of pFiST decreased slightly with highly skewed element names and data values. This is because that XML doc-
uments are not skewed and pFiST indexed the sequence nodes which also contain structural information rather than ele-
ment names and data values.

7.3.7. Varying the probability of OR operators
We have measured the influence of the OR operators on the performance of the filtering algorithms. In order to focus on

the effect of OR operators, we first generate the twig patterns which contain only AND operators then replace AND operators
with OR operators according to the probability po; that is, the twig patterns used in this experiments have the same
structures.

First, we measured the time for parsing twig patterns to see the effects of OR operators. As explained in Section 6, we need
the simplification step for parsing twig patterns with AND operators and both the decomposition step and simplification step
for parsing twig patterns with OR operators.

As expected, the total number of twig patterns was increased after the decomposition step with the probability of OR
operators, which is described in Table 4. Fig. 23a shows the ratio for parsing twig patterns with OR operators to parsing twig
patterns with only AND operators. Although the total number of twig patterns was increased as the probability of OR oper-
ators was increased, the total parsing time for twig pattern containing OR operators was slightly decreased.
Table 4
The number of twig patterns after the decomposition

Probability of OR operators NITF Treebank

0.0 150,000 150,000
0.1 174,314 175,595
0.2 195,802 198,068
0.3 215,021 217,094
0.4 230,898 232,990
0.5 245,025 246,551

0

 0.2

 0.4

 0.6

 0.8

1

 1.2

0.50.40.30.20.1

R
at

io

Probability of OR operators

Treebank
NITF

0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

0.50.40.30.20.10.0

T
im

e(
se

c)

Probability of OR operators

Treebank,20k
Treebank,10k

NITF,20k
NITF,10k

(a) Ratio of parsing time (b) Filtering time

Fig. 23. Varying the probability of OR operators.

70 J. Kwon et al. / Data & Knowledge Engineering 67 (2008) 51–73
This is explained as follows: When we parse twig patterns with OR operators, the decomposition of twig patterns with OR
operators makes a large number of twig patterns. However, the decomposed twig pattern has a small number of branches.
This reduces costs for the simplification step of decomposed twig patterns and the overall parsing time.
 100

 150

 200

 250

 300

 350

4321

M
em

or
y

us
ag

e(
M

B
)

Number of predicates per twig pattern

NITF, Nt=150000,10k
Treebank, Nt=150000,10k

NITF, Nt=125000,10k
Treebank, Nt=125000,10k 200

 250

 300

 350

 400

20k10k5k

M
em

or
y

us
ag

e(
M

B
)

Sizes of documents

NITF, Nt=150000
NITF, Nt=125000
NITF, Nt=100000

Treebank, Nt=150000
Treebank, Nt=125000
Treebank, Nt=100000

(a) Varying the number of value- (b) Varying the sizes of
based predicates documents

 250

 260

 270

 280

 290

 300

 310

1.00.80.60.40.20.0

M
em

or
y

us
ag

e(
M

B
)

Varying skewness of elements/data

NITF, Nt=150000,10k
Treebank, Nt=150000,10k

 100

 150

 200

 250

 300

0.50.40.30.20.10.0

M
em

or
y

us
ag

e(
M

B
)

Probability of OR operators

NITF, Nt=150000, 10k
Treebank, Nt=150000, 10k

(c) Varying the skewness of (d) Varying the probability of
elements/data OR operators

Fig. 24. Memory usage.

J. Kwon et al. / Data & Knowledge Engineering 67 (2008) 51–73 71
Second, we measured the filtering time with varying the probability of OR operators. The observation is that the filtering
time for NITF did not change noticeably and the filtering time for Treebank decreased slightly. This result explains the effec-
tiveness of the decomposition of twig patterns with OR operators although it makes more number of twig patterns.

7.3.8. Memory usage
In this experiment we investigate the impact of processing value-based predicates on memory usage. We measured the total

memory consumptions by reading the statistics given in/proc/self/statm, which provides memory statistics of processes.
Fig. 24a depicts the memory usage of the pFiST system as the number of predicates increases. As expected, the memory

usage is increased with the number of predicates is increased. Another observation is that the memory usage of NITF data
sets is changed more considerably than that of Treebank data sets due to the characteristics of the DTD.

Fig. 24b shows the effect of input document sizes on memory usage. The sizes of the input XML documents ranged from
‘‘5k” to ‘‘20k” and the number of value-based predicates per twig pattern (Np) was fixed to 3. The memory consumption by
pFiST was insensitive to the sizes of input documents. This is because the size of a runtime stack is bounded by the depth of
an input document. The average depth of input documents is 10 for NITF and 20 for Treebank.

Fig. 24c depicts the memory usage for varying the skewness of element names and data values. As explained in Section
7.3.6, pFiST is less sensitive to skewness of element names and data values. Thus, the memory usage is changed slightly with
the skewness.

Fig. 24d shows the memory usage for various probability of OR operators. Since the decomposition step makes a twig
pattern with complex structures to multiple twig patterns with simple structures, the memory usage is decreased as the
probability of OR operator is increased.
8. Conclusions

In XML filtering systems, twig patterns (or user profiles) contain structural patterns as well as value-based selections.
Although existing XML filtering systems can process structure matching of twig patterns efficiently, they provide limited
or no support for value-based predicates containing various operators. In this paper, we have presented the design of the
pFiST system for value-based predicate filtering of XML documents. We have developed an algorithm, which can process
structure matching and also handle value-based predicates in twig patterns. The value-based predicates can include equality
operator (=) and non-equality operators (<;>;<¼; >¼). Value-based predicates can contain AND and OR operators and pFiST
processes them via a simplification and decomposition approach. The experimental results conducted over different data
sets and twig patterns demonstrate that pFiST can efficiently support value-based predicate filtering of XML documents.
Acknowledgements

We are grateful to the anonymous referees for their valuable comments.
References

[1] J. Kwon, P. Rao, B. Moon, S. Lee, FiST: scalable XML document filtering by sequencing twig patterns, in: Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005, pp. 217–228.

[2] A. Berglund, S. Boag, D. Chamberlin, M.F. Fernández, M. Kay, J. Robie, J. Siméon, XML path language (XPath) 2.0 W3C working draft 16, Tech. Rep. WD-
xpath20-20020816, World Wide Web Consortium, August 2002. <http://www.w3.org/TR/xpath20>.

[3] N. Bruno, N. Koudas, D. Srivastava, Holistic twig joins: optimal XML pattern matching, in: Proceedings of the 2002 ACM-SIGMOD Conference,
Madison, Wisconsin, 2002, pp. 310–321.

[4] J. Lu, T.W. Ling, C.Y. Chan, T. Chen, From region encoding to extended dewey: on efficient processing of XML twig pattern matching, in: Proceedings
of the 31st VLDB Conference, Trondheim, Norway, 2005, pp. 193–204.

[5] S. Chen, H.-G. Li, J. Tatemura, W.-P. Hsiung, D. Agrawal, K.S. Candan, Twig2Stack: bottom-up processing of generalized-tree-pattern queries over XML
documents, in: Proceedings of the 32nd VLDB Conference, Seoul, Korea, 2006, pp. 283–294.

[6] H. Jiang, H. Lu, W. Wang, Efficient processing of XML twig queries with OR-predicates, in: Proceedings of the 2004 ACM-SIGMOD Conference, ACM,
New York, NY, USA, 2004, pp. 59–70.

[7] P. Rao, B. Moon, PRIX: indexing and querying XML Using Prüfer sequences, in: Proceedings of the 20th IEEE International Conference on Data
Engineering, Boston, MA, 2004, pp. 288–299.

[8] M. Altinel, M.J. Franklin, Efficient filtering of XML documents for selective dissemination of information, in: Proceedings of the 26th VLDB Conference,
Cairo, Egypt, 2000, pp. 53–64.

[9] Y. Diao, M. Altinel, M.J. Franklin, H. Zhang, P. Fischer, Path sharing and predicate evaluation for high-performance XML filtering, ACM Trans. Database
Syst. 28 (4) (2003) 467–516.

[10] B. Ludäscher, P. Mukhopadhyay, Y. Papakonstantinou, A transducer-based XML query processor, in: Proceedings of the 28th VLDB Conference, Hong
Kong, China, 2002, pp. 227–238.

[11] F. Peng, S.S. Chawathe, XPath queries on streaming data, in: Proceedings of the 2003 ACM-SIGMOD Conference, ACM Press, San Diego, CA, 2003, pp.
431–442.

[12] A.K. Gupta, D. Suciu, Stream processing of XPath queries with predicates, in: Proceedings of the 2003 ACM-SIGMOD Conference, ACM Press, San Diego,
CA, 2003, pp. 419–430.

[13] C.Y. Chan, P. Felber, M.N. Garofalakis, R. Rastogi, Efficient filtering of XML documents with XPath expressions, in: Proceedings of the 18th IEEE
International Conference on Data Engineering, San Jose, CA, 2002, pp. 235–244.

http://www.w3.org/TR/xpath20

72 J. Kwon et al. / Data & Knowledge Engineering 67 (2008) 51–73
[14] N. Bruno, L. Gravano, N. Koudas, D. Srivastava, Navigation- vs. index-based XML multi-query processing, in: Proceedings of the 19th IEEE International
Conference on Data Engineering, Bangalore, India, 2003, pp. 139–150.

[15] C. Byun, K. Lee, S. Park, A keyword-based filtering technique of document-centric XML using NFA representation, Int. J. Appl. Math. Comput. Sci. 4 (3)
(2007) 136–143.

[16] A. Raj, P. Kumar, Branch sequencing based XML message broker architecture, in: Proceedings of the 23rd IEEE International Conference on Data
Engineering, Istanbul, Turkey, 2007, pp. 656–665.

[17] M.M. Moro, P. Bakalov, V.J. Tsotras, Early profile pruning on XML-aware publish–subscribe systems, in: Proceedings of the 33rd VLDB Conference,
Vienna, Austria, 2007, pp. 866–877.

[18] F. Tian, B. Reinwald, H. Pirahesh, T. Mayr, J. Myllymaki, Implementing a scalable XML publish/subscribe system using a relational database system, in:
Proceedings of the 2004 ACM-SIGMOD Conference, Paris, France, 2004, pp. 479–490.

[19] S. Hou, H.-A. Jacobsen, Predicate-based filtering of XPath expressions, in: Proceedings of the 22nd IEEE International Conference on Data Engineering,
Atlanta, Georgia, USA, 2006, p. 53.

[20] K.S. Candan, W.-P. Hsiung, S. Chen, J. Tatemura, D. Agrawal, AFilter: adaptable XML filtering with prefix-caching suffix-clustering, in: Proceedings of the
32nd VLDB Conference, Seoul, Korea, 2006, pp. 559–570.

[21] G. Gou, R. Chirkova, Efficient algorithms for evaluating XPath over streams, in: Proceedings of the 2007 ACM-SIGMOD Conference, Beijing, China, 2007,
pp. 269–280.

[22] C. Koch, S. Scherzinger, M. Schmidt, XML prefiltering as a string matching problem, in: Proceedings of the 24th IEEE International Conference on Data
Engineering, Cancun, Mexico, 2008, pp. 626–635.

[23] S. Amer-Yahia, L.V.S. Lakshmanan, S. Pandit, FleXPath: flexible structure and full-text querying for XML, in: Proceedings of the 2004 ACM-SIGMOD
Conference, Paris, France, 2004, pp. 83–94.

[24] P. Rao, B. Moon, Sequencing XML data and query twigs for fast pattern matching, ACM Trans. Database Syst. 31 (1) (2006) 299–345.
[25] A. Balmin, F. Özcan, K.S. Beyer, R. Cochrane, H. Pirahesh, A framework for using materialized XPath views in XML query processing, in: Proceedings of

the 30th VLDB Conference, Toronto, Canada, 2004, pp. 60–71.
[26] L. Chen, S. Wang, E.A. Rundensteiner, Replacement strategies for XQuery caching systems, Data Knowledge Eng. 49 (2) (2004)

145–175.
[27] C.Y. Chan, Y. Ni, Efficient XML data dissemination with piggybacking, in: Proceedings of the 2007 ACM-SIGMOD Conference, Beijing, China, 2007, pp.

737–748.
[28] T. Milo, T. Zur, E. Verbin, Boosting topic-based publish–subscribe systems with dynamic clustering, in: Proceedings of the 2007 ACM-SIGMOD

Conference, Beijing, China, 2007, pp. 749–760.
[29] M. Hong, A.J. Demers, J. Gehrke, C. Koch, M. Riedewald, W.M. White, Massively multi-query join processing in publish/subscribe systems, in:

Proceedings of the 2007 ACM-SIGMOD Conference, Beijing, China, 2007, pp. 761–772.
[30] B. Chandramouli, J. Phillips, J. Yang, Value-based notification conditions in large-scale publish/subscribe systems, in: Proceedings of the 33rd VLDB

Conference, Vienna, Austria, 2007, pp. 878–889.
[31] D. Megginson, Simple API for XML. <http://sax.sourceforge.net/>.
[32] H. Prüfer, Neuer Beweis eines Satzes über Permutationen, Arch. Math. Phys. 27 (1918) 142–144.
[33] NITF, NITF: news industry text format. <http://www.nitf.org/>.
[34] Treebank, The Penn Treebank Project. <http://www.cis.upenn.edu/~treebank/>.
[35] A.L. Diaz, D. Lovell, XML generator, September 1999. <http://alphaworks.ibm.com/tech/xmlgenerator>.
[36] G.K. Zipf, Human Behaviour and the Principle of Least Effort: An Introduction to Human Ecology, Addison-Wesley, 1949.
[37] Apache, Apache Xerces C++ Parser. <http://xml.apache.org/xerces-c/>.

Joonho Kwon is a Ph.D. candidate in the School of Electrical Engineering and Computer Science, Seoul National University,
Seoul, Korea. He received his M.S. and B.S. degrees in the Department of Computer Engineering from Seoul National University,
Seoul, Korea, in 1999 and 2001, respectively. His current research interests include XML filtering, XML indexing and query
processing and Web services.
Praveen Rao is an Assistant Professor of Computer Science and Electrical Engineering at the University of Missouri-Kansas City.
His research interests include XML indexing and query processing, XML filtering and stream processing, XML data management
in peer-to-peer systems, and indexing graph databases and graph mining. He received his Ph.D. and M.S. degrees in Computer
Science from the University of Arizona in 2007 and 2001, respectively. He received his B.E. degree in Computer Engineering from
the University of Pune (India) in 1999. Praveen was a software engineer for Amazon.com during 2001–2002.

http://sax.sourceforge.net/
http://www.nitf.org/
http://www.cis.upenn.edu/~treebank/
http://alphaworks.ibm.com/tech/xmlgenerator
http://xml.apache.org/xerces-c/

J. Kwon et al. / Data & Knowledge Engineering 67 (2008) 51–73 73
Bongki Moon is an Associate Professor of Computer Science at the University of Arizona. His current research areas of interest
are XML indexing and query processing, information streaming and filtering, spatial and temporal databases, and parallel and
distributed processing. He received his Ph.D. degree in Computer Science from University of Maryland, College Park, in 1996, and
his M.S. and B.S. degrees in Computer Engineering from Seoul National University, Korea, in 1985 and 1983, respectively. He was
a communication systems research staff at Samsung Electronics Corp. and Samsung Advanced Institute of Technology, Korea,
from 1985 to 1990. He received the National Science Foundation CAREER Award in 1999.
Sukho Lee received his BA degree in Political Science and Diplomacy from Yonsei University, Seoul, Korea, in 1964 and his M.S.
and Ph.D. in Computer Sciences from the University of Texas at Austin in 1975 and 1979, respectively. He is currently a professor
of the School of Computer Science and Engineering, Seoul National University, Seoul, Korea, where he has been leading the
Database Research Laboratory. He served as the president of Korea Information Science Society in 1994. He served as the
honorary chair in the International Symposium on Database Systems for Advanced Applications (DASFAA), 2004 and in the
International Conference on Very Large Data Bases (VLDB), 2006. His current research interests include database management
systems, spatial database systems, multimedia database systems and web services.

	Value-based predicate filtering of XML documents
	Introduction
	Related Workwork
	Our motivations. Most previous work on XML filtering focused on processing structural matches of twig patterns against incom- ing XML documents. Some of the previous work support a limited form of va

	Background
	Twig Pattern Queries Supported pattern queries supported by pFiST
	SAX Events events for XML Filteringfiltering
	Pr uuml fer Sequencessequences

	The Proposed Systemproposed system
	Overview of pFiST
	Data Structuresstructures
	Filtering Algorithmalgorithm

	Value-based Predicate Processingpredicate processing
	Observation
	Handling Predicates predicates in Twig Patternstwig patterns
	Algorithms for Processing Value-based Predicatesprocessing value-based predicates

	Extensions
	Notations
	Predicates with OR operators
	Predicates with AND operators

	Experimental Resultsresults
	Experimental setup
	Data sets and twig patterns
	Environments

	Effect of equality operators
	Varying sizes of input XML documents

	Effect of various operators
	Varying the number of twig patterns
	Varying sizes of input XML documents
	Varying the number of value-based predicates
	Varying the probability of equality operators
	Varying the probability of predicates
	Varying the skewness of elements names and data values
	Varying the probability of OR operators
	Memory usage

	Conclusions
	AcknowledgementAcknowledgements
	References

