
The VLDB Journal (2016) 25:673–694
DOI 10.1007/s00778-015-0414-1

SPECIAL ISSUE PAPER

Flash as cache extension for online transactional workloads

Woon-Hak Kang1 · Sang-Won Lee1 · Bongki Moon2

Received: 31 January 2015 / Revised: 20 August 2015 / Accepted: 14 November 2015 / Published online: 30 November 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract Considering the current price gap between hard
disk and flashmemory SSD storages, for applications dealing
with large-scale data, it will be economically more sensible
to use flash memory drives to supplement disk drives rather
than to replace them. This paper presents FaCE, which is
a new low-overhead caching strategy that uses flash mem-
ory as an extension to the RAM buffer of database systems.
FaCE aims at improving the transaction throughput as well
as shortening the recovery time from a system failure. To
achieve the goals, we propose two novel algorithms for flash
cachemanagement, namelymulti-version FIFO replacement
andgroup second chance. Thiswas possible due toflashwrite
optimization as well as disk access reduction obtained by the
FaCE caching methods. In addition, FaCE takes advantage
of the nonvolatility of flash memory to fully support data-
base recovery by extending the scope of a persistent database
to include the data pages stored in the flash cache. We have
implemented FaCE in the PostgreSQL open-source database
server and demonstrated its effectiveness for TPC-C bench-
marks in comparison with existing caching methods such as
Lazy Cleaning and Linux Bcache.

Keywords Flash memory SSDs · Cache · Recovery

B Sang-Won Lee
swlee@skku.edu

Woon-Hak Kang
woonagi319@skku.edu

Bongki Moon
bkmoon@snu.ac.kr

1 School of Information and Communication Engineering,
Sungkyunkwan University, Suwon 440-746, Korea

2 Department of Computer Science and Engineering, Seoul
National University, Seoul 151-744, Korea

1 Introduction

As the technology of flash memory solid-state drives (SSDs)
continues to advance, they are increasingly adopted in a wide
spectrum of storage systems to deliver higher throughput at
more affordable prices. For example, it has been shown that
flash memory SSDs can outperform disk drives in terms of
throughput, energy consumption, and cost-effectiveness for
database workloads [26,27]. Nevertheless, it is still true that
the price per unit capacity of flash memory SSDs is higher
than that of disk drives, and the market trend is likely to con-
tinue for the foreseeable future. Therefore, for applications
dealing with large-scale data, it may be economically more
sensible to use flashmemory SSDs to supplement disk drives
rather than to replace them.

In this paper, we present a low-overhead strategy and its
implementation for using flashmemory as an extended cache
for a recoverable database. Thismethod is referred to asFlash
asCacheExtension orFaCE for short. Like any other caching
mechanism, the objective of FaCE is to provide the perfor-
mance of flash memory and the capacity of disk at as little
cost as possible. We set out to achieve this with the realiza-
tion that flashmemoryhas drastically different characteristics
(such as no overwriting, slow writes, and nonvolatility) than
DRAM buffer, and they must be dealt with carefully and
exploited effectively. There are a few existing approaches
that store frequently accessed data in flash memory drives by
using them as either faster disk drives or an extension to the
RAM buffer. The FaCE method we propose is in line with
the existing approaches using flash memory as an extension
to the DRAM buffer, but it is also different from them in
several ways.

First, the FaCE framework aims at flash write optimiza-
tion as well as disk access reduction. Unlike DRAM buffer
that yields almost uniform performance for both random and

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-015-0414-1&domain=pdf

674 W.-H. Kang et al.

sequential accesses, the performance of flash memory varies
considerably depending on the type of operations (i.e., read
or write) and the pattern of accesses (i.e., random or sequen-
tial). With most contemporary flash memory SSDs, random
writes are slower than sequential writes approximately five
to ten times. (See Table 1.) The FaCE framework provides
flash-aware strategies for managing the flash cache that can
be designed and implemented independently from the RAM
buffer management policy. By turning small random writes
to large sequential ones, high sequential bandwidth and inter-
nal parallelism ofmodern flashmemory SSDs can be utilized
more effectively for higher throughput [12]. To achieve this,
we propose a flash cache replacement method called multi-
version FIFO (mvFIFO).

Second,FaCE takes advantage of the nonvolatility of flash
memory and extends the scope of a persistent database to
include the data pages stored in the flash cache. Once a data
page evicted from the RAM buffer is staged in the flash
cache, it is considered having been propagated to the per-
sistent database. Therefore, the data pages in the flash cache
can be utilized tominimize the recovery overhead, accelerate
restarting the system from a failure, and achieve transaction
atomicity and durability at the nominal cost. The only addi-
tional processing required for a system restart is to restore the
meta-data of flash cache, but it does not take more than just
a few seconds. In addition, since most data pages that need
to be accessed during the recovery phase can be found in
the flash cache, the recovery time will be significantly short-
ened. The recovery manager of FaCE provides mechanisms
that fully support database recovery and persistent meta-data
management for cached pages.

Third,FaCE is a low-overhead framework that uses a flash
memory drive as an extension of a RAM buffer rather than
a disk replacement. The use of flash cache is tightly coupled
with the RAM buffer. Unlike some existing approaches, a
data page is cached in flash memory not on entry to the RAM
buffer, but instead on exit from it. This is because a copy in
the flash cache will never be accessed while another copy
of the same page exists in the RAM buffer. The run-time
overhead is very small, as there is no need for manual or
algorithmic elaboration to separate hot data items from the
cold ones. FaCE reduces but never increases the amount of
traffic to and from disk, because it does not migrate data
items between flash memory and disk drives just for the sake
of higher cache hits. When the flash cache is full, if a page
is to be removed and it is dirty, it will be written to disk,
very much like a dirty page evicted from the RAM buffer
and flushed to disk.

We have implemented the FaCE framework in the Post-
greSQL open-source database server. Most of the changes
necessary forFaCE aremadewithin the buffermanagermod-
ule, the checkpoint process, and the recovery daemon. In the
TPC-C benchmarks, we observed that FaCE yielded hit rates

from the flash cache in the range from low 72 to 91% and
reduced disk writes 46–89% consistently. This high hit rate
and considerable write reduction led to substantial improve-
ment in transaction throughput by up to a factor of two or
more. Besides, FaCE reduced the restart time by more than a
factor of four consistently over the various checkpoint inter-
vals.

The rest of this paper is organized as follows: Section 2
reviews the characteristics of contemporary flash memory
and our motivation as well as cost-effectiveness of flash
memory cache. Section 3 reviews the previous work on
flash memory caching and presents the analysis of the cost-
effectiveness of flash memory as an extended cache. In
Sect. 4, we overview the basic framework and design alter-
natives of FaCE and present the key algorithms for flash
cache management. Section 5 presents the database recovery
system designed for FaCE. In Sect. 6, we analyze the perfor-
mance impact of the FaCE system on the TPC-C workloads
and demonstrate its advantages over the existing approaches.
Lastly, Sect. 7 summarizes the contributions of this paper.

2 Motivation

A flash memory SSD is a nonvolatile storage device that
has different characteristics than a traditional magnetic disk
drive. With no mechanical parts inside, the SSD can achieve
low access latency and high random throughput utilizing
ample internal parallelism. However, it does not allow any
data to be updated in place and takes longer time to process
a write operation than a read operation. This section moti-
vates our work on FaCE by analyzing the characteristics of
SSDs with respect to random and sequential performance,
especially for write operations, and the cost-effectiveness of
flash memory as a cache extension.

2.1 Disparity in SSD write performance

As the technology of flash memory SSDs continues to inno-
vate, the performance has improved remarkably in both
sequential bandwidth and random throughput. Table 1 com-
pares the performance characteristics of flash memory SSDs
and magnetic disk drives. The throughput and bandwidth in
the table were measured by the Flexible I/O tester [4] when
the devices were in the steady state. The flash memory SSDs
are consumer and datacenter-oriented products. The mag-
netic disks are enterprise-class 15k RPM drives, and they
were tested as a single unit or as a 16-disk RAID-0 array.

The currently available consumer-grade SSDs use a
SATA3 interface running at 6.0Gb/s. In Table 1, Samsung
SSD 840 Pro and Intel DC S3500 use a SATA3 interface.
There exists a substantial disparity between random and
sequential performance measured in terms of bandwidth for

123

Flash as cache extension for online transactional workloads 675

Table 1 Performance characteristics of flash memory SSDs and magnetic disk drives

Storage media RAND (IOPS) SEQ (MB/s) Capacity
in GB

Market price
as of 2015

Price
per GB($)

Release
year

Read Write Read Write

Samsung 840 Proa 65,803 13,979 534 398 256 $159 0.62 Nov. 2012

Samsung 850 Evoa 98,591 6,094 518 300 250 $98 0.39 Dec. 2014

Intel DC S3500a 60,311 21,572 470 425 480 $554 1.15 Aug. 2013

Intel NVMe P3700b 457,355 86,949 2,671 676 400 $1198 2.97 Jun. 2014

Single diskc 409 343 156 154 146.8 $26 0.18 Jul. 2011

16-diskc RAID-0 5,166 5,169 1723 1645 2,340 $416 0.18 Jul. 2011

RAND : 4kB random IOPS, SEQ : 128kB sequential bandwidth
SSD: aSATA 3(6Gb/s), bPCIe
cDisk: Seagate Cheetah 15.6K 146.8GB (SAS 3Gb/s)

write operations. The sequential write bandwidth of 840 Pro
SSD was about seven times higher than its random write
bandwidth. The ratio was five in the case of Intel DC S3500
SSD. The DC S3500 is a datacenter-oriented SSD. Our work
on FaCE aims at developing a new flash caching method
that exploits maximally the superior sequential write perfor-
mance of flash memory SSDs.

It should also be noted that SSD vendors have continu-
ously improved the random write performance in resource-
intensive ways such as over-provisioning and battery-backed
cache [24] to diminish the disparity of random and sequen-
tial performance. For instance, Intel DC P3700 NVMe SSD,
as given in Table 1, yields just about twice higher sequen-
tial write bandwidth than its random write bandwidth. The
advantages of FaCE over LC may vanish with those high-
end SSDs. However, NVMe SSDs are about five times more
expensive than commodity SSDs in terms of $/GB. One of
the goals of FaCE is the cost-effective use of commodity
SSDs. Given the low cost of commodity SSDs and the life
span that can be extended by FaCE, we still believe FaCE
is a caching scheme that is superior to LC with respect to
performance, cost, and endurance.

2.2 Write amplification and flash endurance

Many vendors have been manufacturing SSD products using
TLCNANDflash chips in order to increase the storage capac-
ity while keeping the cost low. TLC (three-level cell) NAND
flash chips achieve higher density thanSLC (single-level cell)
or MLC (two-level cell) NAND flash chips by storing three
bits in a cell, but offer a much lower level of endurance. TLC
NAND flash chips allow just about 1000 program/erase (or
P/E in short) cycles, and consequently, SSD products with
TLC NAND chips are more prone to durability and reliabil-
ity issues.

As for the endurance of an SSD,write amplification factor
(WAF) is the most commonly used parameter, which indi-

cates how effectively the scarce P/E cycles of NAND flash
chips are utilized.WAF is a numerical value that can be com-
puted by the following equation.

WAF = Physical writes to NAND

Logical writes by HOST

The lower the WAF value is, the more effectively the P/E
cycles are utilized and hence the longer the life span of an
SSD is expected for the same workload.

The amount of logical or physical writes can be mea-
sured by using the S.M.A.R.T (Self-Monitoring, Analysis,
and Reporting) technology, which is supported by most con-
temporary SSD products for accessing the internal state such
as wear leveling count [32] ormedia wearout indicator [21].
To measure the amount of physical writes to NAND, we
collected the wear_leveling_count (ID #177) from
theSamsungSSDand themedia_wearout_indicator
(ID #233) from the Intel SSD. The amount of logical writes
was obtained by collecting the total_LBAs_written
(ID #241) from the both devices.

The wearout of an SSD is affected by several factors such
as the randomness, locality, and sizes of writes. Table 2 com-
pares the level of wearout measured when the unit size of
writes was 256 or 4kB. We measured WAF values for two
different commodity SSDs after executing random reads and
writes with a command queue depth of 32 for 10h. With a
larger unit of writes, WAF was lower about ten times for the
SamsungSSDproduct and about three times for the Intel SSD

Table 2 Effect of writes sizes on WAF

Storage media (total NAND size in GB) Write sizes

256kB 4kB

Samsung 840 Pro (256GB) 1.03 5.15

Intel DC S3500 (526GB) 1.08 3.04

123

676 W.-H. Kang et al.

product. This clearly indicates that FaCE can help extend the
life span of SSDs by turning many small random writes into
a few large sequential writes.

2.3 Cost-effectiveness of flash cache

Suppose a page is evicted from the RAMbuffer to disk and is
fetched back from disk to the RAMbuffer again. The I/O cost
involved in this process will be a disk read and an optional
disk write if the page was dirty.

With a buffer replacement algorithm that does not suffer
from Belady’s anomaly [6], an increase in the number of
buffer frames is generally expected to provide a fewer page
faults. Tsuei et al.have shown that the data hit rate is a linear
function of log (Bu f f er Si ze) in OLTP workloads when the
database size is fixed [38]. Based on this observation, we
analyze the cost-effectiveness of flash memory as a cache
extension. The question we are interested in answering is
how much flash memory will be required to achieve the same
level of reduction in I/O time obtained by an increase in
DRAM buffer capacity. In the following analysis, Cdisk and
Cflash denote the time taken to access a disk page and the
time taken to access a flash page, respectively.

Suppose the DRAM buffer size is increased from B to
(1+ δ)B for some δ > 0. Then, the increment in the hit rate
is expected to be

α log((1 + δ)B) − α log(B) = α log(1 + δ)

for a positive constant α. The increased hit rate will lead to
reduction in disk accesses, which accounts for reduced I/O
time by αCdisk log(1 + δ). If the δB increment of DRAM
buffer capacity is replaced by an extended cache of θB flash
memory, then the data hit rate (for both DRAM hits and flash
memory hits) will increase to α log((1+θ)B). Since the rate
of DRAMhits will remain the same, the rate of flashmemory
hits will be given by

α log((1 + θ)B) − α log(B) = α log(1 + θ).

Each flashmemory hit translates to an access to disk replaced
by an access to flash memory. Therefore, the amount of
reduced I/O time by the flash cache will be α(Cdisk −
Cflash) log(1 + θ).

The break-even point for θ is obtained by the following
equation

αCdisk log(1 + δ) = α(Cdisk − Cflash) log(1 + θ)

and is represented by a formula below.

1 + θ = (1 + δ)
Cdisk

Cdisk−Cflash (1)

For most contemporary disk drives and flash memory SSDs,
the value of Cdisk

Cdisk−Cflash
is very close to one. For example, with

aSeagate disk drive and aSamsungflashmemorySSDshown
in Table 1, the value of the fraction is approximately 1.006
for read-only workload and 1.025 for write-only workload.

This implies that the effect of extended caching by flash
memory is almost as good as that of extended DRAM cache.
Given that NAND flash memory is almost ten times cheaper
than DRAM with respect to price per capacity and the price
gap is expected to grow, this analysis demonstrates that the
cost-effectiveness of flash cache is indeed significant, espe-
cially when the system is IO bound.

3 Related work

3.1 Faster disk versus buffer extension

In some of the existing approaches [10,25], flash memory
drives are used as yet another type of disk drives with faster
access speed. Flash memory drives may replace disk drives
altogether for small- to medium-scale databases or may be
used more economically to store only frequently accessed
data items for large-scale databases. When both types of
media are deployed at the same time, a data item typically
resides exclusively in either of the media unless disk drives
are used in a lower tier in the storage hierarchy [17].

One technical concern about this approach is the cost
of identifying hot data items. This can be done either sta-
tically by profiling [10] or dynamically by monitoring at
run-time [25], but not without drawbacks. While the static
approach may not cope with changes in access patterns, the
dynamic one may suffer from excessive run-time and space
overheads for identifying hot and data objects and migrat-
ing them between flash memory and disk drives. It is shown
that the dynamic approach becomes less effective when the
workload is update intensive [10].

In contrast, if flash memory SSDs are used as a RAM
buffer extension or a cache layer between RAM and disk, it
can simply go along with the data page replacement mech-
anism provided by the RAM buffer pool without having to
provide any additional mechanism to separate hot data pages
from cold ones. There is no need to monitor data access pat-
terns hence very little run-time overhead and no negative
impact from the prediction quality of future data access pat-
terns.

Two important observations can be made in Table 1 in
regard to utilizing flash memory as a cache extension. First,
there still exists considerable bandwidth disparity between
random writes and sequential writes with both commodity
and datacenter SSDs. The random write bandwidth was in
the range of merely 10–20% of sequential write bandwidth,
while random read enjoys bandwidth much closer (in the

123

Flash as cache extension for online transactional workloads 677

range of 44–50%) to that of sequential read. Unlike DRAM
buffer that yields uniform performance regardless of types or
patterns of accesses, the design of flash cache management
should take the unique characteristics of flash memory into
account.

Second, disk arrays are a very cost-effective means for
providing high sequential bandwidth. However, they still
fall far behind flash memory SSDs with respect to random
I/O throughput, especially for random reads. Therefore, the
caching framework for flash memory should be designed
such that random disk I/O operations are replaced by ran-
dom flash read and sequential flash write operations as much
as possible.

3.2 Flash cache as database bufferpool extension

Flash memory SSDs have recently been adopted by com-
mercial database systems to store frequently accessed data
pages. For example, for data warehouse applications, Oracle
Exadata Smart Flash Cache caches hot data pages in flash
memory when they are fetched from disk in the write-around
fashion [1,30]. Hot data selection is done statically by the
types of data such that tables and indexes have higher pri-
ority than log and backup data. A more recent edition of
Oracle Exadata supports the write-back sync policy as well
for OLTP workloads [37].

Similarly, the Bufferpool Extension prototype of IBM
DB2 proposes a temperature-aware caching (TAC) scheme
that relies on data access frequencies [9,11]. TAC monitors
data access patterns continuously to identify hot data regions
at the granularity of an extent or a fixed number of data pages.
Hot data pages are cached in the flashmemory cache on entry
to the RAM buffer from disk. TAC adopts a write-through
caching policy. When a dirty page is evicted from the RAM
buffer, it is written to both the flash cache and disk. Con-
sequently, the flash cache provides caching effect for read
operations but no effect of reducing disk write operations.
Besides, the high cost of maintaining cache meta-data per-
sistently in flash memory degrades the overall performance.
(See Sect. 5.1 for more detailed descriptions of the persistent
meta-data management.)

In contrast, the Lazy Cleaning (LC) method caches data
pages in flash memory upon exit from the RAM buffer and
handles them by a write-back policy if they are dirty [14]. It
uses a background thread to flush dirty pages from the flash
cache to disk,when the percentage of dirty pages goes beyond
a tunable threshold. The LCmethod manages the flash cache
usingLRU-2 replacement algorithm.Hence, replacing a page
in the flash cache incurs costly random read and randomwrite
operations.

The LC method was recently enhanced with a recovery
mechanism [13]. The recoverable LC uses the flash cache
mapping directory and database transaction log to avoid

checkpointing dirty pages cached in flash memory. The map-
ping directory stores the logical to physical address mapping
information for data pages cached in the flashmemory. Since
the mapping directory is stored in the log, the mapping
information can be rebuilt from the log during the system
restart. The recoverableLCmethod can reduce ramp-up time.
However, FaCE has already shown that the flash cache can
accelerate database recovery by utilizing the persistency of
flash memory and meta-data checkpointing [23].

The Cost-Adjusted Caching (CAC) adopted the Greedy
Dual algorithm to manage the buffer pool and pages cached
in the flash memory SSD [28]. CAC elaborates on the bene-
fit of caching individual pages to determine which pages to
cache in flash memory. This requires maintaining the refer-
ence information for all the data pages cached in the SSD.
However, it is unclear in the study how much the cost of
maintaining references will increase as the number of pages
in the flash cache increases. The authors of CAC reported
that mvFIFO performed poorly for TPC-C workloads due to
the low utilization of SSD. However, they neglected the fact
that the low utilization of SSD is an evidence that mvFIFO
turns random writes to sequential ones effectively. The low
utilization also indicates that the impact of flash cache will
be sustained longer without saturation as the size of a disk
farm increases. We have observed that mvFIFO kept the uti-
lization of an SSD as a flash cache in the range of 60–80%
for a RAID-0 array with 16 disk drives.

Among the aforementioned flash caching approaches, the
LC method is the closest to the FaCE caching scheme pre-
sented in this paper. In both approaches, data pages are cached
in flash memory upon exit from the RAM buffer and man-
aged by a write-back policy. Other than this similarity, the
FaCE method differs from the LC methods in a few critical
aspects of utilizing flash memory for caching and database
recovery purposes and achieves 2.3 times higher transaction
throughput than the LC method.

First of all,FaCE considers not only cache hit rates but also
write optimization of flash cache. It manages the flash cache
in the first-in-first-out fashion and allows multiple versions
left in the flash cache, so that random writes are avoided
or turned into sequential ones. The FIFO style replacement
allows FaCE to replace a group of pages at once so that
internal parallelism of a flash memory SSD can be exploited.
It also boosts the cache hit rate by allowing a second chance
to stay in the flash cache for warm data pages. In general,
a flash caching mechanism improves the throughput of an
OLTP system as the capacity of its flash cache increases,
which will peak when the entire database is stored in the
flash cache.

Second, FaCE extends the scope of a persistent database
to include the data pages stored in the flash cache. It may
sound a simple notion but its implications are significant. For
example, database checkpointing can be done much more

123

678 W.-H. Kang et al.

efficiently by flushing dirty pages to the flash cache rather
than disk and bynot subjecting data pages in theflash cache to
checkpointing. Furthermore, the persistent data copies stored
in the flash cache can be utilized for faster database recovery
from a failure.FaCE provides a low-overheadmechanism for
maintaining the meta-data persistently in flash memory. We
have implemented all the caching and recovery mechanisms
of FaCE fully in the PostgreSQL system.

3.3 Flash cache in the OS layer

Recently, several flash caching methods have been devel-
oped into the operating system block layer for more general
applications. Some of them are commercial products: Intel’s
Cache Acceleration Software(CAS) [20], FusionIO’s ioTur-
bine [16], and SanDisk’s FlashSoft [33]. Other are open
source: Google’s Bcache [31], Facebook’s flashcache [35],
dm-cache [40] and STEC’s enhance IO [36]. In this section,
we briefly describe Bcache, which has been available in the
block layer since Linux kernel version 3.10, in more detail.

Bcache aims at optimizing the caching performance of
a flash memory SSD by minimizing random write requests
onto it. To achieve this goal, Bcache uses a large chunk (or
bucket) of flash memory as a basic unit of replacement. The
default size of a bucket is 512kB, but it is meant to be equal
to the size of an erase unit of a flash memory SSD being used
as a caching device. The cache buckets can be managed by
the LRU, FIFO, or Random replacement algorithm and are
synced with a backing device (or a disk drive) in the write-
through (default), write-back, or write-around mode. On a
read miss, Bcache fetches the missed page from the backing
device and hands it over to the upper layer. The fetched page
is inserted into the flash cache by a background daemon. The
daemon is also responsible for garbage collection of flash
cache.

Bcache segregates write requests to take advantage of
the locality of data. If write requests are initiated by the
same process or sequentiality is detected in the logical block
addresses, those write requests are inserted into the same
open bucket. Otherwise, they are scattered to different flash
buckets. Bcache bypasses the flash cache if data being writ-
ten are unlikely to be read again shortly. For example, when a
large chunk of data is written, only the first bucket is cached
in flashmemorywhile the rest iswritten to the backing device
directly. This bypassingmethod prevents the flash cache from
being polluted by cold data.

There is an important distinction between flash caching
methods as a database bufferpool extension (e.g., FaCE) and
those provided in the operating system block layer (e.g.,
Bcache). While the former can always decide whether to
cache a page on entry from disk to the RAM buffer or on
exit from the RAM buffer to disk, the latter can only cache a
page on entry from disk to the RAM buffer unless the page

is evicted dirty. If a page is evicted clean, the page is simply
discardedwithout the block layer being notified of the fact. In
other words, the flash cache in the block layer has no choice
but to cache clean pages on entrywhen they are fetched from
disk.

3.4 Log-structured database techniques for flash
storages

Recently, there has been a widening body of work based
on log-structured techniques that treat the log as the data-
base, particularly in the field of NoSQL and distributed
databases [5,7,8,34]. For example, Hyder bases itself on
the log-structured database in order to make the best use of
flash-based storage [7,8]. In general, random writes could
be transformed into sequential writes to a log-structured
database made in the append-only fashion for higher write
bandwidth.

In this regard, the motivation behind the flash-based log-
structured techniques is in the same vein with that of FaCE,
although those bodies of work use SSDs as main storage
instead of caching storage.

4 Flash as cache extension

The principal benefit of using flash memory as an extension
to a RAMbuffer is that amix of flashmemory and disk drives
can be used in a unified way without manual or algorithmic
intervention for data placement across the drives.Whenadata
page is deemed cold and swapped out by the buffer manager,
it may be granted a chance to stay in the flash cache for an
extended period. If the data page turns out warm enough to be
referenced again while staying in the flash cache, then it will
be swapped back into the RAM buffer from flash memory
muchmore quickly than from disk. If a certain page is indeed
cold and not referenced for a long while, then it will not be
cached in either the RAM buffer or the flash cache.

4.1 Basic framework

Figure 1 illustrates the main components and their interac-
tions of a caching system deployed for a database system,

Fig. 1 Flash as cache extension: overview

123

Flash as cache extension for online transactional workloads 679

when the flash cache is enabled. The main interactions
between the components are summarized as follows.

– When the database server requests a data page that is not in
memory (i.e., the RAMbuffer), the flash cache is searched
for the page. (A list of pages cached in flash memory is
maintained in the RAM buffer to support the search oper-
ations.) If the page is found in the flash cache (i.e., flash
hit), it is fetched from the flash cache. Otherwise, it is
fetched from disk.

– When a page is swapped out of the RAM buffer, different
actions can be taken on the page depending on whether
it is clean or dirty. If it is clean, the page is discarded or
staged in to the flash cache. If it is dirty, the page is written
back to disk or staged in to the flash cache, or both.

– When a page is staged out of the flash cache, different
actions can be taken on the page depending on whether
it is clean or dirty. If it is clean, the page is just dis-
carded. If it is dirty, the page is written to disk unless
it was already written to disk when evicted from the RAM
buffer.

Evidently from the key interactions described above, the
fundamental issues are when and which data pages should
be staged in to or out of the flash cache. There are quite a
few alternatives to addressing the issues, and they may have
profound impact on the overall performance of the database
server. For example, when a data page is fetched from disk
on a RAM cache miss, we opt not to enter the page to the
flash cache, because the copy in the flash cache will never
be accessed while the page is cached in the RAM buffer. For
this reason, staging a page in to the flash cache is considered
only when the page is evicted from the RAM buffer.

4.2 Design choices for FaCE

TheFaCE caching scheme focuses on howexactly data pages
are to be staged in the flash cache and how the flash cache
should be managed. Specifically, in the rest of this section,
we discuss alternative strategies toward the following three
key questions and justify the choices made for the FaCE
scheme: (1) When a dirty page is evicted from the RAM
buffer, does it have to be written through to disk as well as the
flash cache or only to the flash cache? (2)Which replacement
algorithm is better suited to exploiting flash memory as an
extended cache? (3) When a clean page is evicted from the
RAM buffer, does it have to be cached in flash memory at
all or given as much preference as a dirty page? These are
orthogonal questions. An alternative strategy can be chosen
separately for each of the three dimensions.

Note that the FaCE scheme does not distinguish data
pages by types (e.g., index pages vs. log data) nor moni-
tor data access patterns to separate hot pages from cold ones.

Nonetheless, there is nothing in the FaCE framework that
disallows such additional information to be used in making
caching decisions. Table 3 summarizes the design choices
of FaCE and compares them with existing flash memory
caching methods. The design choices of FaCE will be elab-
orated in this section.

4.2.1 Data sync policy

When a dirty page is evicted from the RAM buffer, it may
be written through to both disk and the flash cache. Alter-
natively, a dirty page may be written back only to the flash
cache, leaving its disk copy intact and outdated until it is
synchronized with the current copy when being staged out
of the flash cache and written to disk.1

The two alternative approaches of write-back and write-
through are equivalent in the effect of flash caching for read
operations. However, the overhead of the write-through pol-
icy is obviously much higher than that of the write-back
policy for write operations. While the write-through pol-
icy requires a disk write as well as a flash write for each
dirty page being evicted from the DRAM buffer, the write-
back policy reduces disk writes by staging them in the flash
cache until they are staged out to disk. In effect, write-back
replaces one or more disk writes (required for a dirty page
evicted repeatedly) with as many flash writes followed by a
single (deferred) disk write. For the reason, FaCE adopts the
write-back policy rather than write-through.

Now that the flash and disk copies of a data page may not
be in full sync, FaCE ensures that a request of the page from
the database server is always served by the current page. Note
that the adoption of a write-back policy does not make the
database server any more vulnerable to data corruption, as
flash memory is a nonvolatile storage medium. In fact, the
FaCE caching scheme provides a low-cost recovery mecha-
nism that takes advantage of the persistency of flash-resident
cached data. (Refer to Sect. 5 for details.)

Modern high-capacity SSDs have started adopting TLC
flash memory chips. They have very low endurance with
only about a thousand P/E cycles, and they are prone to
unexpected failures. In order to avoid data loss even with
less reliable devices, any flash caching scheme should be
equipped with protection from data loss. For this reason, we
have also implemented the write-through policy, which syn-
chronizes data between the flash cache and disk at all times
such that the database can be recovered even in the presence
of a failure of a flash caching device.

1 The write-around policy and its variants are suggested for streaming
andOLAPworkloads to avoid polluting the cache [2].We do not discuss
them further in this paper, because our focus is on OLTP workloads.

123

680 W.-H. Kang et al.

Table 3 Comparison of flash
caching methods: WT, WB, and
WA denote write-through,
write-back, and write-around,
respectively

Exadata TAC LC Bcache FaCE

When On entry On entry On exit On entry On exit

What Clean/Dirty Clean/Dirty Clean/Dirty Clean/Dirty Clean/Dirty

Sync WA/WB WT WT/WB WT/WB/WA WT/WB

Replacement LRU LRU LRU/2 LRU/FIFO/Random mvFIFO+GSC

Granularity Page Page Page Bucket Page

4.2.2 Flash cache replacement policy

The size of a flash cache is likely to much larger than the
RAM buffer but is not unlimited either. The page frames in
the flash cache need to be managed carefully for better uti-
lization. The obvious first choice is to manage the flash cache
by LRU replacement. With LRU replacement, a victim page
is chosen at the rear end of the LRU list regardless of its
physical location in the flash cache. This implies that each
page replacement will incur a random flash write for an (log-
ically) in-place replacement. Random writes are the pattern
that requires flash memory to make the most strenuous effort
to process, and the bandwidth of random writes is typically
an order of magnitude lower than that of sequential writes
with flash memory.

Alternatively, a flash cache can be managed by FIFO
replacement. The FIFO replacement may seem irrational,
given that it is generally considered inferior to the LRU
replacement and can suffer from Belady’s anomaly with
respect to hit rate. Nonetheless, the FIFO replacement has
its own unique merit when it is applied to a flash caching
scheme. Since all incoming pages are enqueued to the rear
end of the flash cache, all flash writes will be done sequen-
tially in the append-only fashion. This particularwrite pattern
is known to be a perfect match with flash memory [27] and
helps the flash cache yield the best performance.

The FaCE scheme adopts a variant of FIFO replacement.
This is different from the traditional FIFO replacement in that
one or more different versions of a data page are allowed to
be present in the flash cache simultaneously. When a flash
frame is to be replaced by an incoming page, a victim frame
is selected at the front end of the flash cache and the incom-
ing page is enqueued to the rear end of the flash cache. If the
incoming page is dirty, then it is enqueued unconditionally.
No additional action is taken to remove existing versions in
order not to incur random writes. If the incoming page is
clean, then it is enqueued only when its copy does not exist
in the flash cache. A data page dequeued from the flash cache
is written to disk only if it is dirty and it is the latest version in
the flash cache, so that redundant disk writes can be avoided.
We call this approachmulti-versionFIFO (mvFIFO) replace-
ment. Refer to Sect. 4.3 for the elaborate design of FaCE and
its optimization.

Despite the previous studies reporting the limitations of
LRU replacement applied to a second-level buffer cache [39,
41], we observed that LRU replacement still delivered higher
hit rates in the flash cache than themvFIFO replacement. This
is partly attributed to the fact that the former keeps no more
than a single copy of a page cached in flash memory while
the latter may need to store one or more versions of a page.
However, the gap in the hit rates was narrow and far out-
weighed by the reduced I/O cost of themvFIFO replacement
with respect to the overall transaction throughput.

4.2.3 Page admission policy: clean and dirty

Caching a page in flash memory will be beneficial, if the
cached copy is referenced again before being removed from
the flash cache and the cost of a disk read is higher than
the combined cost of a flash write and a flash read, which
is true for most contemporary disk drives and flash memory
SSDs. The caching decision thus needs to be made based on
how probable it is a cached page will be referenced again
at least once before the page is removed from the flash
cache.

As a matter of fact, if a page being evicted from the RAM
buffer is dirty, it is always beneficial to cache the page in
flash memory, because an immediate disk write would be
requested for the page otherwise. In addition, by caching
dirty pages, the write-back policy can turn a multitude of
diskwrites—required for repeated evictions of the same page
from the RAM buffer—into as many flash writes followed
by a single disk write.

On the other hand, the threshold for caching a clean page in
flash memory is higher. This is because caching a clean page
could cause a dirty page to be evicted from the flash cache
and written to disk, while no disk write would be incurred if
the clean page was simply discarded. In that case, the cost of
caching a clean page, which is no less than a disk write and
a flash write, will not be recovered by a single flash hit.

Therefore, especiallywhen awrite-back policy is adopted,
dirty pages should have priority over clean ones with respect
to caching in flash memory. This justifies the adoption of our
new mvFIFO replacement that allows multiple versions of a
data page to be present in the flash cache.

123

Flash as cache extension for online transactional workloads 681

4.3 The FaCE system

In a traditional buffer management system, a dirty flag is
maintained for each page kept in the buffer pool to indicate
whether the page has been updated since it was fetched from
disk. Using a single flag per page in the buffer is sufficient,
because there exist no more than two versions of a data page
in the database system at any moment. In the FaCE system,
however, a data page can reside in the flash cache as well as
a DRAM buffer and disk. Therefore, the number of different
copies of a page may be more than two, not to mention the
different versions of data pages that may be maintained in
the flash cache by the mvFIFO replacement.

We introduce another flag called a flash dirty (or fdirty in
short) to represent the state of a data page accurately. Much
like a dirty flag is set for a data page updated in the DRAM
buffer, if a fdirty flag is set for a buffered data page that is
newer than its corresponding flash-resident copy. With the
flags playing different roles, the FaCE system can determine
what action needs to be taken when a page is evicted from the
DRAM buffer or from the flash cache. This will be explained
in detail shortly.

Both dirty and fdirty flags are reset to zero, when a page is
fetched from disk (because a copy does not exist in the flash
cache). They are both set to one when the page is updated in
the DRAM buffer. If a page is fetched from the flash cache
after being evicted from the DRAM buffer, then the fdirty
flag must be reset to zero to indicate that the two copies in
the DRAM buffer and the flash cache are synced. However,
the dirty flag of this page must remain unaffected, since this
page in the DRAMand flash cachemay still be newer than its
disk copy. This implies that while the fdirty flags are needed
only for the pages in the DRAM buffer, the dirty flags must
be maintained for the pages both in the DRAM buffer and in
the flash cache.

When a page is evicted from the DRAM buffer, it is
enqueued to the flash cache unconditionally if the fdirty flag
is on. Otherwise, it is enqueued to the flash cache only when
there is no identical copy already in the flash cache. If a copy
is enqueued unconditionally by a raised fdirty flag, it will
be the most recent version of the page in the flash cache.
Since the conditional enqueuing ensures no redundancy in
the flash cache, these enqueuing methods—conditional and
unconditional—of mvFIFO guarantee that there will be no
more than one copy of one distinct version and the latest ver-
sion of a page can be considered the only valid copy among
those in the flash cache.

For the convenience of disposing invalid copies, we main-
tain a validflag for each page cached in the flashmemory. The
valid flag is set for any page entering the flash cache, which
in turn invalidates the previous version in the flash cache so
that there exists only a single valid copy at any moment in
time. The previous version is invalidated by simply removing

it from the hash table and marking it as invalid in the meta-
data directory. Since the hash table and meta-data directory
are memory resident, invalidating an old version does not
incur any additional I/O operation until they are flushed to
stable storage bymeta-data checkpointing. (Refer to Sect. 5.1
for checkpointing.) When a page is dequeued from the flash
cache, we will flush it to disk only if the dirty and valid flags
are both on. Otherwise, it will be simply discarded.

Themain operations of themvFIFO replacement are illus-
trated in Fig. 2 and summarized in Algorithm 1.

Group second chance

The second chance replacement is a variant of the FIFO
replacement and is generally considered superior to its basic
form. The same idea of second chance can be adopted for
the mvFIFO replacement. With a second chance given to a
valid page being dequeued from the flash cache, if the page
has been referenced while staying in the flash cache, it will
be enqueued back instead of being discarded or flushed to
disk.

For a DRAM buffer pool, the second chance replace-
ment is implemented by associating a reference flag with
each page and by having a clock hand point to a page being
considered for a second chance. Since it does not involve
copying or moving pages around, the second chance replace-
ment can be adopted with a little additional cost for setting
and resetting reference flags. For the flash cache being man-
aged by the mvFIFO replacement, on the other hand, it is
desired that data pages are physically dequeued from and
enqueued to flash memory for efficiency of sequential I/O
operations.

The negative aspect of this, however, is the increased I/O
activities, as dequeuing and enqueuing a page require two
I/O operations to be made to the flash cache. This will be
further aggravated if more than a few valid (and referenced)
pages need to be examined by the second chance replacement
before a victim page is found in the flash cache. It is an
ironic situation, because the more pages in the flash cache
are hit by references or utilized, the more likely the cost of a
replacement grows higher.

To address this concern, we propose a novel group second
chance (GSC) replacement for the flash cache. When a page
evicted from the DRAM buffer is about to enter the flash
cache, a replacement is triggered to make a space for the
page. The pages at the front end of the flash cache will be
scanned to find a victim page, but the group second chance
limits the scan depth so that the replacement cost is bounded.
Though the scan depth can be set to any small constant, it
will make a practical sense to set the scan depth to no more
than the number of pages (typically 64 or 128) per a flash
memory block.

123

682 W.-H. Kang et al.

Fig. 2 Multi-version FIFO
flash cache

Algorithm 1: Multi-version FIFO Replacement
On eviction of page p from the DRAM buffer:

if p. f dir ty = true ∨ p /∈ flash cache then
invalidate the previous version of p if it exists;
p is enqueued to the flash cache;
p.valid ← true;

end if
On eviction of page p from the flash cache:

if p.dir ty = true ∧ p.valid = true then
p is written back to disk;

else
p is discarded;

end if
On fetch of page p from disk:

dir ty ← f dir ty ← f alse;
On fetch of page p from the flash cache:

f dir ty ← f alse;
On update of page p in the DRAM buffer:

dir ty ← f dir ty ← true;

All the pages within the scan depth are dequeued from the
flash cache in a batch. Following the basic mvFIFO replace-
ment, the pages in a batch are either discarded or flushed to
disk if their reference flags are down. Then, the remaining
pages will be enqueued back to the flash cache. In a rare case
where all the pages in the batch are referenced, the page at the
very front end will be discarded or flushed to disk in order to
make a space for an incoming page from the DRAM buffer.
In a more typical case, the number of pages to be enqueued
back will be much smaller than the scan depth. In this case,
more pages are pulled from the LRU tail of the DRAMbuffer
to fill up the space in the batch. This ensures that a dequeuing
or enqueuing operation will be carried out by a single batch-
sized I/O operation, muchmore infrequently than being done
for individual pages.

Pulling page frames from the DRAM buffer is analogous
to what is done by the background write-back daemons of
the Linux kernel or the DBWR processes of the Oracle data-
base server. The Linux write-back daemons wake up when

free memory shrinks below a threshold and write dirty pages
back to disk to free memory. The Oracle DBWR processes
perform a batch write to make clean buffer frames available.
We expect that the effect of pulling page frames is negligible
on hit rate of the DRAM buffer and the flash cache either
positively or negatively.

5 Recovery in FaCE

When a system failure happens, it must be recovered to a
consistent state such that the atomicity anddurability of trans-
actions are ensured. Two fundamental principles for database
recovery are write-ahead logging and commit-time force-
write of the log tail. The FaCE system is no different in that
these twoprinciples are strictly applied for database recovery.

When a dirty page is evicted from the DRAMbuffer, all of
its log records are written to a stable log device in advance.
As far as the durability of transactions is concerned, once a
dirty page is written to either the flash cache or disk, the page
is considered persistently propagated to the database, as the
flash memory drive used as a cache extension is nonvolatile.
The nonvolatility of flash memory ensures that it is always
possible for the FaCE recovery system to recover the latest
copies from the flash cache after a system failure.

It is interesting to note thatFaCE utilizes data pages stored
in the flash cache to serve dual purposes, namely cache exten-
sion and recovery. Since FaCE ensures that data pages stored
in the flash cache are always the same as or newer than the
copies stored in disk, the flash cache can be used to improve
the overall cache performance during the online database
processing and to recover the system from a failure more
quickly. In this section, we present the recovery mechanism
of FaCE that achieves transaction atomicity and durability
at a nominal cost and recovers the database system from a
failure quickly by utilizing data pages survived in the flash
cache.

123

Flash as cache extension for online transactional workloads 683

5.1 Checkpointing the flash cache

If a database system crashes while operating with FaCE
enabled, there is an additional consideration that needs to
be given so that the standard restart steps can restore the
database to a consistent state. Some of the data pages stored
in the flash cache may be newer than the corresponding disk
copies, and the database consistency can only be restored by
using those flash copies. Even if they were fully synced, the
flash copies should be preferred to the disk copies, because
the flash copies will help the system restart more quickly.

The only problem in doing this though is that we must
guarantee the information about data pages cached in the
flash memory survives a system failure. Otherwise, with the
information lost, the flash copies of data pages will be inac-
cessible when the system restarts, and the database may not
be restored to a consistent state. Of course, it is not impos-
sible to restore the meta-data by analyzing the entire flash
cache but it will be a time-consuming process. For example,
it will take about 50 s to scan a flash cache of 20GB capacity
at 400MB/s read speed. Obviously, as the capacity of a flash
cache increases, the time taken to analyze it will increase
proportionally. In contrast, as will be depicted below in this
section, the checkpointing mechanism of FaCE can limit the
analysis time within 1 or 2 s regardless of the capacity of a
flash cache.

One practice common in most database systems is to
include additional meta-data (e.g., file and block identi-
fication numbers and pageLSN) in the individual page
header [18]. However, adding the information about whether
it is cached in the flash to the page header is not an option
either, because it will incur too much additional disk I/O to
update the disk-resident page header whenever a page enters
or leaves the flash cache.

One remedy proposed by the temperature-aware caching
(TAC) [9] is to maintain the meta-data current persistently
in the flash memory. The meta-data are maintained in a
data structure called a slot directory that contains one entry
for each data page stored in the flash cache. TAC uses
flash memory as a write-through cache and relies on an
invalidation–validation mechanism to keep the flash cache
consistent with disk at all times. One obvious drawback of
this approach is that an entry in the slot directory needs be
updated for each page entering the flash cache. This over-
head will not be trivial, because updating an entry requires
two additional random flashwrites—one for invalidation and
another for validation.

In principle, this burden will be shared by any LRU-based
flash cachingmethod thatmaintainsmeta-data persistently in
the flash memory [13]. This is because it needs to update an
entry in the meta-data directory for each page being replaced
in the flash cache, incurring just as much overhead as TAC
does. This overhead will be significant and unavoidable,

Fig. 3 Meta-data checkpointing in FaCE

because the LRU replacement selects any page in the flash
cache for replacement and, consequently, updatingmeta-data
entries will have to be done by random write operations.

Fortunately, however, FaCE has an effective way of
dealing with the overhead since it relies on the mvFIFO
replacement instead of LRU. In a similar way to how a data-
base log tail ismaintained,meta-data changes are collected in
memory and written persistently to flash memory in a single
large segment. This type of meta-data management is feasi-
ble with FaCE, because a data page entering the flash cache
is always written to the rear in chronological order, and so
is its meta-data entry to the directory. Therefore, meta-data
updates will be done more efficiently than doing them for
individual entries (typically tens of bytes each). This process
is illustrated in Fig. 3.

Of course, this memory-resident portion of the meta-data
directory will be lost upon a system failure, but it can be
restored quickly by scanning only a small portion of the flash
cache that corresponds to the most recent segment of meta-
data. We call these meta-data flushing operation flash cache
checkpointing, as saving the meta-data persistently (about
one and a half MBytes each time in the current implementa-
tion of FaCE) is analogous to the database checkpointing.
The flash cache checkpointing is triggered independently
of the database checkpointing. Recovering the meta-data is
described in more detail in the next section.

5.2 Database restart

When a database system restarts after a failure, the first thing
to do is to restore the meta-data directory of the flash cache at
the time of the failure. While the vast majority of meta-data
entries are stored in flash memory and survive a failure, the
entries in the current segment are resident inmemory and lost
upon a failure. To restore the current segment of the meta-
data directory, the data pages whose meta-data entries are
lost need be fetched from the flash cache. Those data pages
can be found at the rear end of the flash cache maintained as

123

684 W.-H. Kang et al.

a circular queue. The front and rear pointers are maintained
persistently in the database control file. The data pages in
the flash cache contain all the necessary information such as
page id and pageLSN in their page header.

In theory, themeta-data directory can be restored by fetch-
ing the data pages belonging only to the latest segment from
the flash cache. However, this will require the database sys-
tem to be quiesced while flushing the current segment of
meta-data is in progress, and its negative impact on the perfor-
mance will not be negligible. In the current implementation
of FaCE, we allow a new meta-data entry to enter the cur-
rent segment in memory, even when the previous segment
is currently being flushed to flash memory. Considering the
fact that a failure can happen even in the midst of flush-
ing meta-data, the current implementation of FaCE restores
the meta-data directory by fetching data pages belonging to
the two most recent segments of the directory from the flash
cache. This way we can avoid quiescing the database sys-
tem and improve its throughput at minimally increased cost
of restart. In fact, as will be shown in Sect. 6.8, FaCE can
shorten the overall restart time considerably, because most of
the redo recovery can be carried out by utilizing data pages
cached persistently in flash memory.

6 Performance evaluation

We have implemented the FaCE scheme in the PostgreSQL
8.4 database server to demonstrate its effectiveness as a flash
cache extension for database workloads. TPC-C benchmark
tests were carried out on a hardware platform equipped with
a RAID-0 array of enterprise-class 15k-RPM disk drives and
consumer-grade SSD and datacenter SSD.

6.1 Prototype implementation

The FaCE scheme has been implemented as an addition to
the buffer manager, recovery, and checkpointing modules
of PostgreSQL. The most relevant functions in the buffer
manager module are buffer allocator and flush
buffer. Thebuffer allocator is calleduponDRAM
buffer misses, and it handles making free buffer for the
requester. In addition, flush buffer is called to flush
dirty buffer to the database if necessary. In the FaCE scheme,
flush buffer is also used to flush a clean buffer, which
was discarded when selected as victim buffer, as well as
dirty one. We have modified these modules to incorporate
the mvFIFO and its optimization strategies of FaCE in the
buffer manager. For database checkpointing, we have modi-
fied the checkpoint module, so that all the dirty pages in the
DRAM buffer are flushed to the flash cache instead of disk.
A new recovery module for the mapping meta-data has been
added.

Fig. 4 In-memory data structures for FaCE

Besides, we have added a few data structures to manage
page frames in the flash cache. Among those are a directory
of meta-data maintained for all the data pages cached in flash
memory and a hash table that maps a page id to a frame in
the flash cache. The directory of meta-data is maintained as
an array of entries (FIFO) or LRU queue depending on the
choice of a management policy. There is an entry for each
page cached in the flash memory, and each entry stores the
page id, frame id, status flag, LSN, and checksum.Much like
a hash table for the DRAM buffer frames, this hash table is
used to determine whether a page is cached in flash memory
and to find the frame if it is cached.

Both the meta-data directory and the hash table are res-
ident in memory, but a persistent copy of the former is
maintained in flash memory as well for recovery purposes.
(See Sect. 5.1 for details.) Since the hash table is not persis-
tent, it is rebuilt from themeta-datawhen the database system
restarts. These in-memory data structures are illustrated in
Fig. 4. The rear pointer of the flash cache is maintained in
the control block of PostgreSQL and is written persistently
as part of meta-data checkpointing, incurring no additional
I/O operations.

6.2 Experimental setup

The TPC-C benchmark is a mixture of read-only and update
intensive transactions that simulate the activities found in
OLTP application environments. The benchmark tests were
carried out by running PostgreSQL with FaCE enabled
on a Linux system with two socket 2.6GHz Intel Xeon
X5650 processor. This computing platform was equipped
with 74GB DRAM, two commodity SSDs (Samsung 850
Evo 250GB, Samsung 840 Pro 256GB), two enterprise-
class datacenter SSDs (Intel DC S3500 480GB, Intel P3700
400GB), and a RAID-0 disk array with 16 drives. The RAID

123

Flash as cache extension for online transactional workloads 685

(a) (b)

Fig. 5 Transaction throughput and hit ratio by different options for caching pages in FaCE-Basic: Postfix ’M,’ ’C,’ and ’D’ denote ’Mixed,’
’CleanOnly,’ and ’DirtyOnly,’ respectively. a Transaction throughput, b hit ratio

controller was Intel RS2WG160 with PCIe 2.0 interface and
512MB cache, and the disk drives were an enterprise class
15k-RPM Seagate ST3146356SS with 146.8GB capacity
each and a serial attached SCSI (SAS) interface.

The database sizewas set to approximately 50GB (scale of
500, approximately 57GB including indexes and other data
files), and the DRAM buffer pool was limited to 200MB in
order to amplify I/O effects for a relatively small database.
The number of concurrent clients was set to 50, which was
the highest level of concurrency achieved on the computing
platform before hitting the scalability bottleneck due to con-
tention [22]. The page size of PostgreSQL was 4kB as well
as flash cache. The benchmark database and workload were
created by the BenchmarkSQL tool [29].

For steady-state behaviors, all performancemeasurements
weremade after the flash cachewas fully populated with data
pages. Both the flash memory and disk drives were bound as
a raw device, and ‘Direct IO’ flag was set in for the data
files so that interference from data caching by the operating
system was minimized.

6.3 Caching clean or dirty pages

First of all, as pointed out in Sect. 4.2, the benefit of caching
a page in flash memory may vary depending on whether it
is clean or dirty. To measure the differential caching effect
of clean and dirty pages, we ran benchmark tests with three
different options for caching pages in flashmemory: (1) clean
pages only, (2) dirty pages only, and (3) mixed of clean and
dirty pages.

The performance trends observed in this set of experi-
ments are shown in Fig. 5a. Not surprisingly, for both FaCE
and LC, the best transaction throughput was yielded by the
third option mixed, which was followed by the second
option dirty only and then by the first option clean

Table 4 Disk write reduction

(Measured in %) Flash cache size

4GB 8GB 12GB 16GB 20GB

Mixed 51 61 66 71 75

Dirty only 53 62 67 71 74

only. Note that FaCE was used with the GSC optimization
disabled in order to isolate the effect of caching different
types of pages. The throughput crossover between FaCE and
LC occurred at around 8GB of flash cache only because the
GSC optimization was disabled. When GSC was enabled,
as shown in Fig. 8b, FaCE-GSC always outperformed LC in
all cache sizes. This trend in transaction throughput can be
in part accounted for by another similar trend observed for
the three options with respect to flash hit rates, as shown in
Fig. 5b.

When it comes to write reduction, however, the outcome
was quite intriguing. Bywrite reduction, wemean diskwrites
eliminated by the flash cache that would be required for all
dirty pages being evicted from the buffer pool without it. For-
mally, it is computed by 1 − Wdisk

Dflash
, where Wdisk denotes the

number of pages written to disk and Dflash denotes the num-
ber of dirty pages evicted from the buffer pool. Obviously, a
higher write reduction is expected to improve transaction
throughput, because costly random writes to disk can be
avoided.

Table 4 shows that the two options,Dirty Only andMixed,
were almost identical with respect to write reduction. Given
that a disk write can be eliminated only when a dirty page
cached in flash memory is overwritten or invalidated by an
incoming copy, there is only one way this seemingly unintu-
itive result can be explained. Despite the reduced population
of dirty pages in the flash cache, it was still large enough to
be hit again once or more by highly skewed writes common

123

686 W.-H. Kang et al.

Table 5 Percentage of flash used to store old versions

Database size Flash cache size

4GB 8GB 12GB 16GB 20GB

108GB 8.3 12.3 14.7 18.1 22.2

57GB 10.0 15.5 23.9 35.3 44.9

21GB 19.2 29.7 47.8 56.9 58.8

in the TPC-C workload [19]. Consequently, caching clean
pages in addition to dirty ones in flash memory improved hit
rates without sacrificing write reduction significantly.

The other option Clear only is not included in Table 4,
as caching clean pages only does not reduce the amount of
disk writes at all. This is because all dirty pages evicted from
the RAM buffer were written to disk without being staged
in the flash cache. For the reasons, FaCE was run with the
Mixed option to cache both clean and dirty pages for all the
experiments reported in this section.

ThemvFIFOofFaCE allowsmultiple versions of the same
page to be stored in the flash cache. To understand how detri-
mental this might be to storage utilization, we measured the
portion of the flash cache capacity being used to store old ver-
sions. The measurements given in Table 5 are the fractions
of varying cache capacities consumed to store old versions
of cached pages. The measurements were obtained for three
different database sizes when FaCE was run with the GSC
optimization. The databases of different sizes were created
by setting the number ofwarehouses to 1000, 500 (the default
configuration), and 200, respectively. As given in Table 5, as
the size of a database decreased, the percentage of old version
pages increased in the flash cache. Consequently, the storage
utilization of FaCE was not as high as a caching method
(e.g., LC) that stores only a single copy of each cached page.
However, as will be shown in Sect. 6.4, FaCE achieves much
higher I/O throughput than LC.

6.4 Transaction throughput: FaCE versus LC

In this subsection, we analyze the performance impact of
FaCE with respect to transaction throughput as well as hit
rate and I/O utilization. We measured I/O utilization by the
iostat utility on the Linux platform. In particular, we col-
lected the %util statistics reported from iostat, which
means ‘percentage of CPU time during which I/O requests
were issued to the device (bandwidth utilization for the
device).’

To demonstrate its effectiveness, we compare FaCE with
theLazyCleaning (LC)method [14],which is one of themost
recent flash caching strategies based on LRU replacement. In
order to evaluate the effect of group second chance (GSC)
optimization, we present the performance measurements of
FaCE under two configurations, with and without it. They

are denoted by FaCE-Basic and FaCE-GSC, respectively, in
this section. For FaCE-GSC, the write batch size was set to
256kB (i.e., 64 4kB pages).

Besides, in order to analyze the effect of different types
of flash memory SSDs, we used both commodity (Samsung
840 Pro) and datacenter (Intel DC S3500) SSDs in the exper-
iments. (Refer to Table 1 for the characteristics of the SSDs.)
Both LC andFaCE built into the PostgreSQL database server
implement the write-back policy by copying dirty pages to
disk when they are evicted from the flash cache and cache
both clean and dirty pages evicted from the DRAM buffer.

6.4.1 Read hit rate and write reduction

Figure 6 compares LC andFaCEwith respect to read hits and
write reductions observed in the TPC-C benchmark using the
Samsung 840 Pro SSD.

As the size of the flash cache increased, both the hit rates
andwrite reductions increased in all cases, because it became
increasingly probable for warm pages to be referenced again,
overwritten or invalidated before they were staged out of the
flash cache.

Figure 6a shows the hit rate of FaCE-GSCwas lower than
that of LC by no more than 3% due to the locality of refer-
ences in the TPC-C workloads.

Not surprisingly, write reduction in LC shown in Fig. 6b
were approximately 3–15% higher than those of FaCE con-
sistently over the entire range of the flash cache sizes tested.
This was because, when the flash cache is managed by LC,
the flash cache keeps no more than a single copy for each
cached page, and the copy is always up-to-date. Thus, LC
could utilize the space of the flash cache more effectively
than FaCE, which could store more than a single copy for
a cached page. Despite such duplicate pages, however, as
Fig. 6a shows, the hit rate of FaCE was not lower than that
of LC by more than 10% due to the locality of references in
the TPC-Cworkloads. Another point to note is that the group
second chance (GSC) improved not only read hits but also
write reductions for FaCE by giving dirty pages a second
chance to stay and to be invalidated in the flash cache rather
than being flushed to disk.

From Fig. 6, it is clear that the effect of GSC optimization
is significant. The group second chance (GSC) improved not
only read hits but also write reductions for FaCE by giving
dirty pages a second chance to stay and to be invalidated in
the flash cache rather than being flushed to disk. Besides, the
batch write of 64 4kB pages in FaCE-GSC is quite effective
in improving the device utilization and I/O throughput.

6.4.2 Storage I/O utilization and throughput

Keeping a single copy for each cached page by LRU often
requires overwriting an existing copy—either an old version

123

Flash as cache extension for online transactional workloads 687

(a) (b)

Fig. 6 Read hit and write reduction rates in flash cache (Samsung 840 Pro SSD)

(a) (b)

Fig. 7 Storage I/O utilization and throughput (Samsung 840 Pro SSD)

or a victim page—in the flash cache. Either way overwrit-
ing a page in the flash cache will incur a random flash
write. Figure 7 compares LC and FaCE with respect to
average utilization and I/O throughput of the flash cache. Fig-
ure 7a shows that LC raised the device saturation of a flash
cache quickly to 80% or higher. As the size of flash cache
increased in FaCE, the average utilization was also linearly
increased.

Figure 7b compares LC andFaCEwith respect to through-
put carried out per second. The results given in figure clearly
reflect the difference between LC and FaCE in device satura-
tion of the flash cache. FaCE processed I/O operations more
efficiently than LC by more than a factor of two when the
size of flash cache was 10GB. This was because the write
operationswere dominantly randombyLRUwhile theywere
dominantly sequential by FaCE. Another important point to
note is that the I/O throughput of FaCE improved consis-
tently and considerably as the size of flash cache increased.
However, the I/O throughput of LC does not improve as the
size of flash cache increased.

6.4.3 Impact on transaction throughput

Figure 8 compares LC and FaCE with respect to transaction
throughputmeasured in the number of transactions processed
perminute (tpmC). In order to understand the scope of perfor-
mance impact by flash caching, we included the cases where
the database was stored entirely on either a flash memory
SSD (denoted by SSD-only) or a disk array (denoted by
HDD-only).

Figure 8a shows the transaction throughput obtained by
using a low-grade commodity SSD, Samsung 850 Evo,
as a caching device (or as a main storage medium for
the SSD-only case). The throughput of SSD-only was
merely about 70% higher than that of HDD-only. This
is because, as given in Table 1, the low random write per-
formance of the TLC-based SSD became a bottleneck in
transaction processing. The LC method, which relies on
random write operations, also yielded almost the same per-
formance trend for the same reason. On the other hand,
FaCE-Basic or FaCE-GSC yielded much higher throughput

123

688 W.-H. Kang et al.

(a) (b)

(c) (d)

Fig. 8 Transaction throughput: FaCE versus LC. a Samsung 850 EVO SSD, b Samsung 840 Pro SSD, c Intel DC S3500 SSD, d Intel NVMe
P3700

consistently over the entire range of a flash cache size with-
out being limited by the low random write throughput of the
caching device. This result demonstrates that FaCE could
take advantage of a small amount of flash memory to deliver
even higher throughput than using a large amount of flash
memory to store the entire database tables.

Figure 8b shows the transaction throughput obtained
by using another commodity SSD, Samsung 840 Pro, as
a caching device. Under the LC method, the transaction
throughput remained flat without any significant improve-
ments with increases in the size of flash cache after 4GB.
This is because the commodity SSDwas already utilized at its
maximum (70–86% as shown in Fig. 7a), and the saturation
in the flash caching device became a performance bottleneck
quickly as more data pages were stored in the flash cache.
Under the FaCE method, in contrast, the utilization of flash
caching device was lower than LC method consistently. As
the size of the flash cache increased, the transaction through-
put continued to improve over the entire range without being
limited by the I/O throughput of the flash caching drive.

With a datacenter SSD, as shown in Fig. 8c, almost iden-
tical trend was observed in transaction throughput by FaCE.

The LC method, on the other hand, improved transaction
throughput and reduced the performance gap considerably.
This was due to the higher random write throughput of the
datacenter SSD. With the large amount of flash cache, how-
ever, FaCE still outperformed LC about 40%. As pointed out
in Sect. 2, the bandwidth disparity between random writes
and sequential writes still exists even in the datacenter-type
SSDs, and FaCE is apt to take advantage of it better by turn-
ing random writes into sequential ones.

Another point to note in Fig. 8 is that the performance
gap between FaCE-Basic and FaCE-GSC widened as the
size of flash cache increased. When the size of flash cache
was 20GB,FaCE-GSCdelivered approximately twice higher
throughput than FaCE-Basic. The significant effect of GSC
optimization was due to the combination of high hit ratio,
highwrite reduction (Fig. 6), high device utilization, and high
I/O throughput (Fig. 7). LC performed comparably with or
slightly better (within 10%) than FaCE-GSC only for Intel
P3700 (Fig. 8d), which is a high-end NVMe SSD released
recently. This is because Intel P3700processes randomwrites
almost as fast as sequential writes.

123

Flash as cache extension for online transactional workloads 689

(a) (b)

Fig. 9 Transaction throughput: FaCE versus Bcache (Samsung 840 Pro SSD). a Transaction throughput, b cache hit ratio

In summary, while LC achieved hit rates and write reduc-
tions better than FaCE and reduced the amount of traffic to
disk drives, FaCE was superior to LC in utilizing the flash
cache efficiently for higher I/O throughput. Despite the trade-
off, it turned out the benefit from higher I/O bandwidth of
flash cache outweighed the benefit from reduced I/O opera-
tions of disk. Overall, FaCE outperformed LC in transaction
throughput considerably irrespective of the type of a flash
memory device used.

6.5 Transaction throughput: FaCE versus Bcache

This section evaluates the performance of FaCE in compar-
ison with Bcache described in Sect. 3.3. Bcache was run in
the write-back sync mode, and both LRU and FIFO were
tested as a cache replacement policy. For fair comparison
with FaCE, the cache device was mounted to the data direc-
tory of PostgeSQL so that only data pages would be cached.
From this section on, the cache device was a Samsung 840
Pro SSD, and the backing device was a RAID-0 array with
16 disk drives.

Figure 9 compares FaCE and Bcache with respect to
transaction throughput and cache hit ratio. In Fig. 9a, FaCE
consistently outperformed Bcache in terms of tpmC regard-
lessly of cache sizes and replacement policies of Bcache.
When the cache size was 20GB, FaCE yielded about 68%
higher throughput than Bcache. This wide performance gap
was attributed to different write patterns produced by FaCE
and Bcache. Although they share the same goal of minimiz-
ing random writes, Bcache did not fulfill it satisfactorily and
had to deal with many random writes for OLTP workloads.
This will be explained later in more detail.

Another reason for the performance gap was due to the
difference in the cache hit ratio. As shown in Fig. 9b, FaCE
achieved about 20% higher hit ratio than Bcache. Cache hit
ratio was measured in the buffer manager of PostgreSQL for

Table 6 Sequentiality and average write size by different caching
schemes: cache size 10GB

Caching scheme Sequentiality (%) Avg write size (kB)

FaCE 20.59 256.3

LC 1.36 4.0

Bcache (FIFO) 10.89 4.6

Bcache (LRU) 8.83 5.2

FaCE, while it was measured in the block layer of OS kernel
for Bcache. We believe that the on-entry caching policy of
Bcache is responsible for the low hit ratio. Bcache stores a
clean page in the flash cache when the page is fetched from
the backing device to the RAM buffer. The page cached in
the flash memory will not be in use until the page frame gets
evicted from the RAM buffer. If the page is dirty on eviction,
the clean copy in the flash cache will be invalidated, because
the dirty but newer version of the page will enter the flash
cache. The clean copy cached in flash memory will get used
only when the page is evicted from the RAM buffer as clean.
This will lower the chance of utilization for the pages cached
in flash memory.

To understand thewrite patternsmade into the flash cache,
we analyzed the I/O traces produced by each caching scheme
by using the blktrace tool [3]. Table 6 compares the sequen-
tiality and average write sizes of the caching schemes. The
write sequentiality was measured by counting the number
of write operations requested in a consecutive region in the
address space. As given in Table, FaCE achieves consider-
ably higher sequentiality than the other caching schemes as
well as almost 50 times larger write size.

Bcachemaintains up to six active buckets by default at any
moment in time. When each bucket is considered separately,
all writes are made in the buckets sequentially. However,
when all six buckets are considered altogether, the pattern of

123

690 W.-H. Kang et al.

(a) (b)

Fig. 10 Storage IO utilization and throughput: FaCE and Bcache (Samsung 840 Pro SSD)

writes is not so sequential, as the writes in the six streams
will be interspersed with one another. The average size of a
write was rather small at about 4.6kB.

In stark contrast, FaCE produced a sequential write pat-
tern, as is clearly shown in Table 6. This is because FaCE
carries out writing multiple pages in a large batch. The aver-
age size of a write was about 256kB for FaCE. In the case of
LC, randomness was even worse and the write pattern was
completely random.

Figure 10a, b compares FaCE and Bcache with respect
to I/O utilization and I/O throughput. As the size of flash
cache increased, the processing capacity of an SSD being
used as a flash cache was consumed much more quickly with
Bcache andmaxed out eventually.WithFaCE, the utilization
of the SSD stayed comfortably below 90% at all times. This
observation concurs well with the I/O throughput of FaCE,
which was almost twice higher than that of Bcache.

6.6 Write-through sync policy for reliability

This subsection analyzes the impact of sync policies,
described in Sect. 4.2, on the transaction throughput. If write-
through is chosen as a sync policy, a dirty page evicted
from the DRAM buffer pool is written to a caching device
(i.e., SSD) and a backing device (i.e., disk drive) simultane-
ously using libaio’sio_submit systemcall. The requesting
thread waits until the both operations are finished.

The main advantage of the write-through sync policy is
that the consistent state of database can be maintained in the
presence of caching devices. However, it is also evident that
the write-through sync policy entails non-trivial overhead of
syncing data between the caching and backing devices at
all times. As shown in Fig. 11, the throughput from both
FaCE-GSC and LC degenerates significantly when the sync
policy was switched from write-back to write-through. Even
worse, the throughput increase saturates in the early stage, as
the overall system becomes bounded by the slow I/O perfor-

Fig. 11 Transaction throughput: Write-Back(WB) versus Write-
Through (WT)

mance of a backing device (i.e., disk) that must flush every
single dirty page evicted from the buffer pool.

Even with the write-through sync, FaCE outperformed
LC approximately 20% in terms of transaction through-
put. This is mainly because FaCE achieves higher write
performance by group replacement, which enables evicting
multiple pages from the DRAM buffer pool by a single sys-
tem call (io_submit).

6.7 Cost-effectiveness and scalability

This subsection evaluates empirically the cost-effectiveness
of the flash cache and its impact on the scalable throughput
of a disk array.

6.7.1 Write amplification under OLTP workload

In order to evaluate the effect of caching methods on the
durability of SSDs, we measured the wearout of SSDs while

123

Flash as cache extension for online transactional workloads 691

Table 7 Comparison of WAF according to caching scheme

Storage media FaCE-GSC LC

Samsung 840 Pro SSD 1.02 5.13

Intel DC S3500 1.08 2.47

running the TPC-C benchmark withFaCE-GSC and LC. The
size of a flash cache was set to 10GB, and the WAF val-
ues were collected every 10s during the benchmark, which
was run for 24h. The benchmark was repeated with the two
caching methods using two different commodity SSDs.

The average WAF values in Table 7 clearly show that
FaCE-GSC wore out the SSDs more slowly than LC by
about 5 times with Samsung 840 Pro and about 2.3 times
with Intel DC S3500. Note that the WAF values shown
in Table 7 are surprisingly close to those in Table 2 of
Section 2. This is because the average write size of FaCE-
GSC was 256.3kB while that of LC was 4.0kB. Refer
to Table 6 for the average write sizes of the two caching
methods.

6.7.2 More DRAM or more flash

A database buffer pool is used to replace slow disk accesses
with faster DRAM accesses for frequently accessed database
items. In general, investing resources in the DRAM buffer is
an effective means to improve the overall performance of
a database system, because a larger DRAM buffer pool will
reduce page faults and increase the throughput. As the size of
a DRAM buffer increases, however, the return on investment
will not be sustained indefinitely and will eventually saturate
after passing a certain threshold. For example, with TPC-C
workloads, theDRAMbuffer hit rate is known to reach a knee
point when its size is quite a small fraction of the database
size due to skewed data accesses [38].

As the analysis given in Sect. 2.3 indicates, the return on
investment is likely to bemuchhigherwithflashmemory than
DRAM given the persistent and widening price gap between
them. To demonstrate the cost-effectiveness of flash memory
as a cache extension, we measured the performance gain that
would be obtained by making the same amount of monetary
investment to DRAM and flash memory.

Assuming that the price per gigabyte of commodity SSD
is approximately ten times lower than DRAM [15], we eval-
uated the cost-effectiveness by measuring the throughput
increment obtained from each 2GB of flash memory or alter-
natively each 200MB of DRAM added to the basic system
configuration described in Sect. 6.2. As shown in Fig. 12, the
transaction throughput (or return on investment) was consis-
tently higher with a wide margin when more resources were
directed to flash memory rather than DRAM.

Fig. 12 16 HDDs versus larger DRAM versus FaCE

Fig. 13 Effect of a disk array size: cache size 16GB

6.7.3 Scale-up with more disks

Nomatter how large a DRAMbuffer or a flash cache is, there
will be cache misses if neither is as large as the entire data-
base. For the reason, the I/O throughput of disk drives will
always remain on the critical path of most database opera-
tions. For example,when a data page is about to enter theflash
cache, another page may have to be staged out of the flash
cache if it is already full. In this case, a page evicted from the
DRAM buffer will end up causing a disk write followed by
a flash write. This acutely points out the fact that the system
throughput may not be improved up to its full potential by
the flash cache alone without addressing the bottleneck (i.e.,
disks) on the critical path.

Using a disk array is a popular way of increasing disk
throughput (measured in IOPS). Figure 13 compares LC and
FaCE with respect to transaction throughput measured with
a varying number of disk drives from one to sixteen. The

123

692 W.-H. Kang et al.

flash cache size was set to 16GB for both LC and FaCE, and
HDD-onlywas also included in the scalability comparison.

For FaCE and HDD-only, transaction throughput
increased consistently as the number of disk drives increased.
This confirms that disk drives were on the critical path, and
increasing disk throughput was the key to improving the
transaction throughput. (Note that the same database was
distributed across all available disk drives). It also confirms
that, with FaCE, the flash cache was never a limiting factor
in transaction throughput even for the largest configuration
we tested (i.e., 16 disk drives in the RAID-0 array). In con-
trast, throughput increase in LC started slowing down earlier
at eight disk drives.

When the number of disk drives was very small (i.e.,
one or two), FaCE was outperformed by LC in transac-
tion throughput, due mainly to the lower utilization of flash
caching device. This result is consistent with the obser-
vations reported in the study of CAC [28], where only
one disk drive was used as a backing device storing the
entire database. However, it should be noted that, as clearly
shown in Fig. 13, a single disk configuration is the most
unfavorable setting for FaCE, which scales better than any
existing flash caching method as the size of a disk array
increases.

6.8 Performance of recovery

In order to evaluate the recovery system ofFaCE, we crashed
the PostgreSQL server using the Linux kill command and
measured the time taken to restart the system. When data-
base checkpointing was turned on, the kill command was
issued at the midpoint of a checkpoint interval. For exam-
ple, if the checkpoint interval was 200s, the kill command
was issued 100s after the most recent checkpoint. In the case
of FaCE, the FaCE (GSC) was chosen for the flash cache
management, and the restart time included the time taken to
restore the meta-data directory. The flash cache size was set
to 10GB.

Table 8 presents the average recovery time taken by the
system when it was run with different checkpoint intervals
100, 200, and 300s. For each checkpoint interval, we took
the average of restart times measured from five separate
runs. Across all three checkpoint intervals,FaCE reduced the
restart time considerably—from about 1.7 to 9 times depend-

Table 8 Time taken to restart the system

(Measured in second) Checkpoint intervals

100 200 300

FaCE-GSC 34 50 59

HDD-only 58 201 525

SSD-only 41 54 66

Fig. 14 Transaction throughput after the system restart

ing on the checkpoint intervals—over theHDD-only system
without flash cache. Such significant reduction in restart time
was possible because the redo recovery could be carried out
by utilizing data pages cached persistently in flash memory.
We observed in our experiments that more than 98% of data
pages required for recoverywere fetched from the flash cache
instead of disk. Another intriguing point is that FaCE recov-
ers slightly faster than even the SSD-only system. This is
because the random writes performed by a Postgres recov-
ery thread are slower than the sequential writes performed
by FaCE.

The restart times given in Table 8 for FaCE include the
time taken to restore the meta-data directory, which was
approximately 1.5 s on average regardless of the checkpoint
interval. The meta-data directory can be restored by fetching
the persistent portion of the directory from flashmemory and
by scanning as many data pages as two segments worth of
meta-data entries from the flash cache. The latter is required
to rebuild the most recent segment of the directory. In our
experiments, the persistent portion of the meta-data direc-
tory was 80MB, and the amount of data pages to read from
the flash cache was 512 MBytes.2 The sequential read band-
width of the flash memory SSD used in our experiments was
high enough—at least 400MB/s—to finish this task within
1.5 s on average.

Figure 14 shows the time-varying transaction through-
put measured immediately after the system was recovered
from a failure. This figure clearly demonstrates that, when
FaCE was enabled, the system resumes normal transaction
processing much more quickly and maintains higher trans-
action throughput at all times. The checkpoint interval was
set to 300s in this experiment.

Figure 14 also shows that transaction throughput slumped
to around 10,000 tmpC shortly after restart for about 400s
before reaching a steady and higher level of throughput. This

2 Each segment contains 64,000 meta-data entries of 32 bytes each.
Among the 40 segments required for a 10GB flash cache, 38 of them
are fetched directly from flash memory and the rest are rebuilt when
the checksum of the data page and stored checksum in the meta-data
directory are the same.

123

Flash as cache extension for online transactional workloads 693

is because all the reference information of pages cached in
flash memory was lost when the system crashed and FaCE
had to run without the GSC optimization until it collected
sufficient page references.

We also measured normal shutdown and restart times.
When the database server shut down, FaCE took between
7 and 9s to flush all the dirty pages from the 200MBDRAM
buffer to flash cache. In addition, FaCE needed to store the
meta-data mapping information, but it took less than a sec-
ond.When thedatabase server restarted,FaCEhelped it reach
a steady state more quickly for the same reason presented for
recovery.

7 Conclusion

This paper presents a low-overhead caching method called
FaCE that utilizes flash memory as an extension to a DRAM
buffer for a recoverable database. FaCE caches data pages
in flash memory on exit from the RAM buffer. By basing
its caching decision solely on the RAM buffer replace-
ment, the flash cache is capable of sustaining high hit rates
without incurring excessive run-time overheads for moni-
toring access patterns, identifying hot and cold data items,
and migrating them between flash memory and disk drives.
We have implemented FaCE and its optimization strate-
gies within the PostgreSQL open-source database server and
demonstrated that FaCE achieves a significant improvement
in the transaction throughput.

We have also made a few important observations about
the effectiveness of FaCE as a flash caching method. First,
FaCE demonstrates that adding flash memory as a cache
extension is more cost-effective than increasing the size of a
DRAMbuffer. Second, the optimization strategies (i.e.,GSC)
of FaCE indicate that turning small random writes to large
sequential ones is critical to maximizing the I/O throughput
of a flash caching device so as to achieve scalable trans-
action throughput. Third, the mvFIFO replacement of FaCE
enables efficient and persistent management of themeta-data
directory for the flash cache and allows more sustainable
I/O performance for higher transaction throughput. Fourth,
FaCE takes advantage of the nonvolatility of flash memory
to minimize the recovery overhead and accelerate the system
restart from a failure. Since most data pages needed during
the recovery phase tend to be found in the flash cache, the
recovery time can be shortened significantly.

Acknowledgments Sang-Won Lee and Bongki Moon are the corre-
sponding authors of this paper. This research was supported in part
by Institute for Information & communications Technology Promo-
tion (IITP) (R0126-15-1088) and the IT R&D program of MKE/KEIT
[10041244, SmartTV 2.0 Software Platform]. This workwas also partly
supported by the National Research Foundation of Korea (NRF) Grant
(No. 2015R1A5A7037372) funded by the Korean Government (MSIP).

References

1. Ashdown, L., Kyte, T.: Oracle Database Concepts 11g Release
2. Oracle Corporation. https://docs.oracle.com/cd/E11882_01/
server.112/e40540.pdf (2015)

2. Athanassoulis, M., Chen, S., Ailamaki, A., Gibbons, P.B., Stoica,
R.: MaSM: efficient online updates in data warehouses. In: Pro-
ceedings of the 2011 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’11, pp. 865–876 (2011)

3. Axboe, J.: blktrace: Block Layer IO Tracing Tool. http://git.kernel.
org/cgit/linux/kernel/git/axboe/blktrace.git

4. Axboe, J.: FIO (Flexible IO Tester). https://github.com/axboe/fio.
git

5. Balakrishnan, M., Malkhi, D., Wobber, T., Wu, M., Prabhakaran,
V., Wei, M., Davis, J.D., Rao, S., Zou, T., Zuck, A.: Tango: dis-
tributed data structures over a shared log. In: Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Princi-
ples, SOSP ’13, pp. 325–340 (2013)

6. Belady, L.A., Nelson, R.A., Shedler, G.S.: An anomaly in space–
time characteristics of certain programs running in a paging
machine. Commun. ACM 12(6), 349–353 (1969)

7. Bernstein, P.A., Das, S., Ding, B., Pilman, M.: Optimizing opti-
mistic concurrency control for tree-structured, log-structured data-
bases. In: Proceedings of the 2015 ACM SIGMOD International
Conference onManagement ofData, SIGMOD’15, pp. 1295–1309
(2015)

8. Bernstein, P.A., Reid, C.W., Das, S.: Hyder—a transactional record
manager for shared flash. In: CIDR 2011, Fifth Biennial Confer-
ence on Innovative Data Systems Research, Asilomar, CA, USA,
January 9–12, Online Proceedings, pp. 9–20 (2011)

9. Bhattacharjee, B., Ross, K.A., Lang, C., Mihaila, G.A.,
Banikazemi, M.: Enhancing recovery using an SSD buffer pool
extension. In: Proceedings of the Seventh International Workshop
on Data Management on New Hardware, DaMoN ’11, pp. 10–16
(2011)

10. Canim, M., Mihaila, G.A., Bhattacharjee, B., Ross, K.A., Lang,
C.A.: An object placement advisor for DB2 using solid state stor-
age. Proc. VLDB Endow. 2(2), 1318–1329 (2009)

11. Canim, M., Mihaila, G.A., Bhattacharjee, B., Ross, K.A., Lang,
C.A.: SSD bufferpool extensions for database systems. Proc.
VLDB Endow. 3(1–2), 1435–1446 (2010)

12. Chen, F., Lee, R., Zhang, X.: Essential roles of exploiting internal
parallelism of flash memory based solid state drives in high-speed
data processing. In: Proceedings of the 2011 IEEE 17th Interna-
tional Symposium on High Performance Computer Architecture,
HPCA ’11, pp. 266–277 (2011)

13. Do, J., Zhang, D., Patel, J.M., DeWitt, D.J.: Fast peak-to-peak
behavior with SSD buffer pool. In: 29th IEEE International Confer-
ence on Data Engineering, ICDE 2013, Brisbane, Australia, April
8–12, pp. 1129–1140 (2013)

14. Do, J., Zhang, D., Patel, J.M., DeWitt, D.J., Naughton, J.F.,
Halverson, A.: Turbocharging DBMS buffer pool using SSDs. In:
Proceedings of the 2011 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’11, pp. 1113–1124 (2011)

15. DramExchange: Price Quites. http://www.dram-exchange.com/
Price/NationalDramDetail.aspx

16. Fusion-IO: IOTurbine. http://www.fusionio.com/products/
ioturbine

17. Gray, J., Fitzgerald, B.: Flash disk opportunity for server applica-
tions. Queue 6(4), 18–23 (2008)

18. Gray, J., Reuter, A.: Transaction Processing: Concepts and Tech-
nique. Morgan Kaufmann, Burlington (1993)

19. Hsu,W.W., Smith, A.J., Young, H.C.: Characteristics of production
database workloads and the TPC benchmarks. IBM Syst. J. 40(3),
781–802 (2001)

123

https://docs.oracle.com/cd/E11882_01/server.112/e40540.pdf
https://docs.oracle.com/cd/E11882_01/server.112/e40540.pdf
http://git.kernel.org/cgit/linux/kernel/git/axboe/blktrace.git
http://git.kernel.org/cgit/linux/kernel/git/axboe/blktrace.git
https://github.com/axboe/fio.git
https://github.com/axboe/fio.git
http://www.dram-exchange.com/Price/NationalDramDetail.aspx
http://www.dram-exchange.com/Price/NationalDramDetail.aspx
http://www.fusionio.com/products/ioturbine
http://www.fusionio.com/products/ioturbine

694 W.-H. Kang et al.

20. Intel: Intel Cache Acceleration Software. http://
www.intel.com/content/www/us/en/software/
intel-cache-acceleration-software-performance.html

21. Intel: Solid-State Drives in Server Storage Applications. http://
www.intel.com/content/dam/www/public/us/en/documents/
white-papers/ssd-server-storage-applications-paper.pdf

22. Johnson, R., Pandis, I., Hardavellas, N., Ailamaki, A., Falsafi, B.:
Shore-MT: a scalable storage manager for the multicore era. In:
Proceedings of the 12th International Conference on Extending
Database Technology: Advances in Database Technology, EDBT
’09, pp. 24–35 (2009)

23. Kang, W.H., Lee, S.W., Moon, B.: Flash-based extended cache for
higher throughput and faster recovery. Proc. VLDB Endow. 5(11),
1615–1626 (2012)

24. Kang,W.H., Lee, S.W.,Moon, B., Kee, Y.S., Oh,M.: Durable write
cache in flashmemorySSD for relational andNoSQLdatabases. In:
Proceedings of the 2014 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’14, pp. 529–540 (2014)

25. Koltsidas, I., Viglas, S.D.: Flashing up the storage layer. Proc.
VLDB Endow. 1(1), 514–525 (2008)

26. Lee, S.W., Moon, B., Park, C.: Advances in flash memory SSD
technology for enterprise database applications. In: Proceedings
of the 2009 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD ’09, pp. 863–870 (2009)

27. Lee, S.W., Moon, B., Park, C., Kim, J.M., Kim, S.W.: A case for
flash memory SSD in enterprise database applications. In: Pro-
ceedings of the 2008 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’08, pp. 1075–1086 (2008)

28. Liu, X., Salem, K.: Hybrid storage management for database sys-
tems. Proc. VLDB Endow. 6(8), 541–552 (2013)

29. Lussier, D., Martin, S.: The BenchmarkSQL Project. http://
benchmarksql.sourceforge.net

30. Oracle Corporation: Oracle TPC Benchmark C Full Disclosure
Report. http://c970058.r58.cf2.rackcdn.com/fdr/tpcc/Oracle_
SPARC_SuperCluster_with_T3-4s_TPCC_FDR_120210.pdf
(2010)

31. Overstreet, K.: bcache. http://bcache.evilpiepirate.org
32. Samsung: Samsung Solid State Drive White Paper. http://www.

samsung.com/global/business/semiconductor/minisite/SSD/us/
html/whitepaper/whitepaper.html

33. SanDisk: FlashSoft. http://www.sandisk.com/enterprise/flashsoft
34. Sears, R., Ramakrishnan, R.: bLSM: a general purpose log struc-

tured merge tree. In: Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’12,
pp. 217–228 (2012)

35. Srinivasan,M., Saab, P.: FlashCache. https://github.com/facebook/
flashcache

36. STEC: EnhanceIO SSD Caching Software. https://github.com/
stec-inc/EnhanceIO

37. Subramaniam, M.: Exadata Smart Flash Cache Features
and the Oracle Exadata Database Machine. Oracle Cor-
poration. http://www.oracle.com/technetwork/database/exadata/
exadatasmart-flash-cache-366203.pdf (2013)

38. Tsuei, T.F., Packer, A.N., Ko, K.T.: Database buffer size inves-
tigation for OLTP workloads. In: Proceedings of the 1997 ACM
SIGMOD International Conference on Management of Data, SIG-
MOD ’97, pp. 112–122 (1997)

39. Willick, D., Eager, D., Bunt, R.: Disk cache replacement policies
for network fileservers. In: Proceedings of the 13th International
Conference on Distributed Computing Systems, pp. 2–11 (1993)

40. Zhao, M.: DM-cache cache target for device-mapper. https://
github.com/mingzhao/dm-cache

41. Zhou, Y., Philbin, J., Li, K.: The multi-queue replacement algo-
rithm for second level buffer caches. In: Proceedings of the General
Track: 2001 USENIX Annual Technical Conference, pp. 91–104
(2001)

123

http://www.intel.com/content/www/us/en/software/intel-cache-acceleration-software-performance.html
http://www.intel.com/content/www/us/en/software/intel-cache-acceleration-software-performance.html
http://www.intel.com/content/www/us/en/software/intel-cache-acceleration-software-performance.html
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ssd-server-storage-applications-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ssd-server-storage-applications-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ssd-server-storage-applications-paper.pdf
http://benchmarksql.sourceforge.net
http://benchmarksql.sourceforge.net
http://c970058.r58.cf2.rackcdn.com/fdr/tpcc/Oracle_SPARC_SuperCluster_with_T3-4s_TPCC_FDR_120210.pdf
http://c970058.r58.cf2.rackcdn.com/fdr/tpcc/Oracle_SPARC_SuperCluster_with_T3-4s_TPCC_FDR_120210.pdf
http://bcache.evilpiepirate.org
http://www.samsung.com/global/business/semiconductor/minisite/SSD/us/html/whitepaper/whitepaper.html
http://www.samsung.com/global/business/semiconductor/minisite/SSD/us/html/whitepaper/whitepaper.html
http://www.samsung.com/global/business/semiconductor/minisite/SSD/us/html/whitepaper/whitepaper.html
http://www.sandisk.com/enterprise/flashsoft
https://github.com/facebook/flashcache
https://github.com/facebook/flashcache
https://github.com/stec-inc/EnhanceIO
https://github.com/stec-inc/EnhanceIO
http://www.oracle.com/technetwork/database/exadata/exadatasmart-flash-cache-366203.pdf
http://www.oracle.com/technetwork/database/exadata/exadatasmart-flash-cache-366203.pdf
https://github.com/mingzhao/dm-cache
https://github.com/mingzhao/dm-cache

	Flash as cache extension for online transactional workloads
	Abstract
	1 Introduction
	2 Motivation
	2.1 Disparity in SSD write performance
	2.2 Write amplification and flash endurance
	2.3 Cost-effectiveness of flash cache

	3 Related work
	3.1 Faster disk versus buffer extension
	3.2 Flash cache as database bufferpool extension
	3.3 Flash cache in the OS layer
	3.4 Log-structured database techniques for flash storages

	4 Flash as cache extension
	4.1 Basic framework
	4.2 Design choices for FaCE
	4.2.1 Data sync policy
	4.2.2 Flash cache replacement policy
	4.2.3 Page admission policy: clean and dirty

	4.3 The FaCE system
	Group second chance

	5 Recovery in FaCE
	5.1 Checkpointing the flash cache
	5.2 Database restart

	6 Performance evaluation
	6.1 Prototype implementation
	6.2 Experimental setup
	6.3 Caching clean or dirty pages
	6.4 Transaction throughput: FaCE versus LC
	6.4.1 Read hit rate and write reduction
	6.4.2 Storage I/O utilization and throughput
	6.4.3 Impact on transaction throughput

	6.5 Transaction throughput: FaCE versus Bcache
	6.6 Write-through sync policy for reliability
	6.7 Cost-effectiveness and scalability
	6.7.1 Write amplification under OLTP workload
	6.7.2 More DRAM or more flash
	6.7.3 Scale-up with more disks

	6.8 Performance of recovery

	7 Conclusion
	Acknowledgments
	References

