Durable Write Cache in Flash Memory SSD
for Relational and NoSQL Databases

Woon-Hak Kang
Sungkyunkwan University
Suwon, 440-746, Korea
woonagi319@skku.edu

Yang-Suk Kee

Samsung Semiconductor Inc.

Milpitas, USA, 95035

*
Sang-Won Lee
Sungkyunkwan University
Suwon, 440-746, Korea
swlee@skku.edu

Bongki Moon
Seoul National University
Seoul, 151-744, Korea
bkmoon@snu.ac.kr

Moonwook Oh
Samsung Electronics
Hwasung, 445-701, Korea

yangseok.ki@ssi.samsung.com mw.oh@samsung.com

ABSTRACT

In order to meet the stringent requirements of low latency
as well as high throughput, web service providers with large
data centers have been replacing magnetic disk drives with
flash memory solid-state drives (SSDs). They commonly use
relational and NoSQL database engines to manage OLTP
workloads in the warehouse-scale computing environments.
These modern database engines rely heavily on redundant
writes and frequent cache flushes to guarantee the atomicity
and durability of transactional updates. This has become
a serious bottleneck of performance in both relational and
NoSQL database engines.

This paper presents a new SSD prototype called DuraSSD
equipped with tantalum capacitors. The tantalum capacitors
make the device cache inside DuraSSD durable, and addi-
tional firmware features of DuraSSD take advantage of the
durable cache to support the atomicity and durability of
page writes. It is the first time that a flash memory SSD with
durable cache has been used to achieve an order of magni-
tude improvement in transaction throughput without com-
promising the atomicity and durability. Considering that the
simple capacitors increase the total cost of an SSD no more
than one percent, DuraSSD clearly provides a cost-effective
means for transactional support. DuraSSD is also expected
to alleviate the problem of high tail latency by minimizing
write stalls.

Categories and Subject Descriptors
H.2 [DATABASE MANAGEMENT)]: Systems

*This work was done while the author was visiting Samsung
Semiconductor Inc.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

SIGMOD’14, June 22-27, 2014, Snowbird, UT, USA.

Copyright 2014 ACM 978-1-4503-2376-5/14/06 ...$15.00.
http://dx.doi.org/10.1145/2588555.2595632.

529

General Terms

Design; Reliability; Performance

Keywords
Atomicity; Durability; SSD; Durable Cache

1. INTRODUCTION

In the era of warehouse-scale computing, a large-scale ap-
plication runs on hundreds or thousands of servers equipped
with their own storage and networking subsystems. When
an application is made up of many tasks running in parallel,
completion of the application is often delayed by a few tasks
experiencing a disproportionate amount of latency, thus af-
fecting negatively the overall utilization of computing re-
sources as well as the quality of services. This latency prob-
lem will be aggravated further with an increasing number of
parallel tasks, because the variance of latencies in parallel
tasks is always amplified by the system scale.

This latency concern, known as high tail latency, poses
serious challenges for online service providers operating
warehouse-scale computers and data centers [9]. Studies on
the effect of increased server side delays show that users re-
spond sharply to the speed of web services and a slower user
experience affects long term behavior. For example, Ama-
zon found every 100ms of latency cost them one percent in
sales, and Google found an extra half second in search re-
sult generation dropped traffic 20 percent. Shopzilla found
a five-second speed-up resulted in a 25 percent increase in
page views, a 7 to 12 percent increase in revenue, a 50 per-
cent reduction in hardware [13].

In order to meet the stringent requirements of low latency
as well as high throughput, major web service providers have
been replacing magnetic disk drives with flash memory SSDs
in their data centers. Ebay witnessed 50% reduction in the
rack space and 78% drop in power consumption with 100
TB of flash memory drives replacing disk-based systems [12].
Such companies as Amazon, Apple, Dropbox, Facebook and
Google are also using solid-state storage in all the servers of
their data centers or moving in that direction [20, 21]. This
trend toward all-flash data centers has already begun and is
expected to be accelerated.

Despite all these exciting developments with flash memory
SSDs taking place in the warehouse-scale computing arenas,

however, flash memory storage is not free of latency variabil-
ity problem. One of the main causes of latency variability is
the need of garbage collection. A flash memory SSD carries
out garbage collection when it runs out of clean blocks, and
this can increase read latency by a factor 100 with even a
modest level of write activity [9]. Similarly, though it may
not be as severe, a read request can be blocked by a varying
number of write operations when the buffer pool is full of
dirty pages. The read request must wait until some of the
dirty pages are flushed to storage and a free buffer frame
becomes available. This free buffer wait can occur more fre-
quently with flash memory SSDs than disk drives due to
the read-write speed disparity of flash memory [14]. Since it
takes more time to write an evicted dirty page to flash mem-
ory than reading one into a free buffer frame, the buffer pool
is more likely to be filled up with dirty pages quickly.

Evidently the problem of latency variability is aggravated
in flash memory SSDs when the level of write activity is high.
The level of write activity is often increased by the need of
atomicity and durability support for transactional updates.
The atomicity of an update cannot be guaranteed without
preventing a partial page write problem, which is typically
dealt with by writing pages redundantly to storage by a
mechanism inspired by shadow paging (for example, double-
buffer writes by the InnoDB storage engine of MySQL). To
guarantee the durability and correct ordering of updates,
most database servers rely on flushing writes from the device
cache to the stable media (most commonly by executing
fsync calls). Modern flash memory SSDs embed a great deal
of DRAM write cache in order to hide relatively long write
time. Consequently, flushing dirty pages from a large DRAM
cache to flash memory chips frequently not only blocks an
application longer but also increases the variability of read
latency.

Backing up a DRAM cache with a capacitor is one of the
most cost-effective ways of making the device cache durable,
which in turn prevents a partial page write, supports an
atomic update without redundant writes, and makes an up-
date durable without force-writing it synchronously. The
main contributions of this work is summarized as follows.

e [t presents the durable cache technology embedded in
a flash memory SSD and a prototype called DuraSSD,
the DRAM cache of which is backed up with tantalum
capacitors (also known as tantalum-polymer capaci-
tors). The architecture and inner workings of DuraSSD
are also described in detail.

e It demonstrates for the first time that DuraSSD is a
quick and effective solution to fix the problem of a
long write latency and the variability of a read latency,
which are often experienced in OLTP and NoSQL ap-
plications requiring transactional updates. DuraSSD
achieves more than an order of improvement in trans-
action throughput in relational and NoSQL workloads
such as LinkBench and YCSB.

e DuraSSD provides support for atomicity, durability
and write ordering at the device level. This opens up
new opportunities for the leaner and more robust de-
sign of a database system.

e In addition to improved performance, DuraSSD pro-
longs the lifetime of a flash memory SSD significantly,

530

| Free Page
List

Database
Buffer

1. Search Free Page

Scan LRU List from Tail
- —————— -

& O E - [E -

Dirty Page Set

Main LRU List

Head

2. Flush Dirty Pages

- Atomicity: redundant write in DWB
- Durability: frequent fsync calls

3. Page Read \

~
Database t] El D D Double Write Buffer
(DWB)
)

on Flash SSD
.
Figure 1: Reads blocked by writes

e

because the absolute amount of data written to flash
memory is reduced more than 50% by avoiding redun-
dant writes and by utilizing a small page size.

The rest of the paper is organized as follows. Section 2 mo-
tivates the development of DuraSSD and describes its bene-
fits. Section 3 presents the overall architecture of DuraSSD
and its internal firmware features introduced to guaran-
tee the atomicity and durability of page writes. In Sec-
tion 4, we evaluate the performance impact of DuraSSD
on MySQL/InnoDB and Couchbase storage engines using
two popular NoSQL benchmarks as well as TPC-C work-
load on a commercial relational database system. Section 5
reviews the existing work on durability by reliable memory,
reliability of SSDs and atomic page write. Lastly, Section 6
summarizes the contributions of this work.

2. BENEFITS OF DuraSSD

As is discussed briefly in Section 1, the variability of
read latency is harmful for reliable performance of OLTP
database and NoSQL applications. The severity of the prob-
lem becomes worse when flash memory SSDs are used as
storage devices.

Consider a database server that uses a shared buffer pool
consisting of a number of page frames. The buffer pages are
concurrently accessed by many user and system processes
and are managed by a buffer replacement algorithm such as
an LRU policy. In order for a process to read a page from
storage, it has to obtain a free page frame from the buffer
pool. If a free page is not available in the buffer pool, the
read request will be blocked until a free page is made avail-
able for the process. The procedure for making a free page
available involves non-trivial and potentially costly steps, as
illustrated in Figure 1.

If the buffer manager runs out of free pages, it scans the
LRU list of buffer frames from its tail to find a victim page.
If the victim page is dirty, its content must be written to
storage before the page being passed over to the requesting
process. This implies that the total elapsed time of a single
read operation felt in the process side will be at least the sum
of a read latency and a write latency if the read is blocked
by a write. Since a page write still takes a few times longer
than a page read in most flash memory SSDs, the latency
of a read operation measured at the process side will vary
widely, sometimes as short as a page read but longer than
a page write at some other times. This is the reason why

the problem of latency variability will be aggravated with
flash memory SSDs. Besides, the atomicity and durability
requirements of database applications commonly require an
update to be written to storage forcefully and redundantly.
This amplifies the latency problem further.

There are not many options for addressing this problem
other than avoiding unnecessary write operations and min-
imizing the average latency of a write operation itself. In
the rest of this section, we present how the durable cache of
a DuraSSD drive can alleviate the problem and summarize
the benefits relational and NoSQL databases can take from
it.

2.1 No Redundant Writes for Atomicity

A crucial assumption for database consistency and recov-
ery is that individual pages should be written to storage
atomically, which is unfortunately not supported by most
secondary storage devices including disks and flash mem-
ory SSDs. If a system crashes, for example due to a power
failure, while a page write is in progress, the page may be
left with a mix of old and new data. With such a partially
written page (i.e., a shorn write), even the write-ahead log-
ging (WAL) would not be enough to completely restore the
consistent state of a database [22]. For this reason, mod-
ern database systems have developed several software-based
methods to guarantee the atomicity of a page write. Many
of the methods are inspired by shadow paging [18].

The InnoDB storage engine of MySQL deals with the par-
tial page write problem by utilizing a redundant page update
technique called double-write [2]. As is depicted in Figure 1,
the InnoDB engine writes pages to a dedicated area in stor-
age. It then re-writes each page to its original location in the
database. All the redundant writes are done forcefully (us-
ing fsync calls if necessary) to ensure the pages are written
persistently in the correct order. When the system recovers
from a failure, it can always find consistent pages either in
the database or in the double write buffer area.

PostgreSQL also takes a similar approach to avoid the
partial page write problem. When the full-page-write option
is on, the PostgreSQL server writes the entire content of a
page (i.e., before image) to the WAL log during the first
modification of the page after a checkpoint. Storing the full
page content guarantees that the page can be correctly re-
stored but at the cost of increasing the amount of data to
be written to the log [3]. Mobile database servers such as
SQLite [1] and Sybase SQL Anywhere [31] are in the same
vein in that they redundantly store before or after image of
each data page being updated in a separate journal area.

With a durable internal cache, DuraSSD is capable of writ-
ing a page atomically. As soon as the content of a page write
request is written to the internal cache of DuraSSD, atomic
write of the page into flash memory is guaranteed from the
moment on. In the event of a power failure, the tantalum
capacitors of DuraSSD ensures that all the pages remain-
ing in the internal write cache are written to dedicated flash
memory blocks.

The device-level support of DuraSSD for atomic page
writes provides a tremendous opportunity for performance
improvement by relieving database servers of making redun-
dant writes for atomic page updates. In fact, DuraSSD helps
simplify the procedures of database updates and recovery,
and improve the transaction throughput significantly, as is
demonstrated in Section 4. Of course, guaranteeing atomic

531

Time

DBMS .
(Buffer Manager) Write (P1, .., P”{A Blocked
0s \1 | Fsync
(Write Barrier Enabled) "
[
Storage ' | +File Metadata
Cache Enabled) ' + “Flush Cache”
"}
Vi

Volatile Cache

lﬁt FTL Address Mapping Data

NNANN

Persistent Storage Media :
e.g. Flash Memory, Magnetic Disk

Figure 2: Durability by fsync and flush-cache

updates requires careful coordination across several software
stacks from a database server to a file system to a kernel
block layer and so on. For example, a database server and a
file system should be configured to have the same page size
as the granularity of page mapping in DuraSSD.

2.2 Write Barriers without Flushing

The fsync call provided by operating systems is a core
mechanism both relational and NoSQL database systems
use to achieve durability of write and preserve correct order
of writes. As is shown in Figure 2, a fsync call causes a non-
trivial delay in a database system, because it sends a flush-
cache command to storage and the storage firmware flushes
all the cached data to the non-volatile media upon the flush-
cache command. A database system is usually blocked while
a fsync call is being processed. This will be a significant
overhead for a large relational or NoSQL system that pro-
cesses a large number of small transactions, as fsync calls
will be heavily used for the transactions.

With the durable cache of DuraSSD, database servers still
need to use fsync calls to maintain correct order of writes.
For example, when a database system needs to keep a strict
order between data pages and log pages being written per-
sistently ahead of the data pages, a f£sync call will be used
between the log pages and data pages. However, that does
not necessarily mean that the device cache of DuraSSD need
be flushed to flash memory just because a fsync call is in-
voked. Since it is guaranteed that all page write requests
written to the internal cache of DuraSSD will be secured,
the consistency of a database will never be disturbed even
without flushing the device cache explicitly, as long as all
the write requests reach DuraSSD in the correct order.

When write barriers are turned off in a file system, fsync
call does not send a flush-cache command to storage. All the
writes will then be written only to the device cache and be
completed much more quickly. Therefore, with write barriers
turned off, DuraSSD can avoid flushing its cache too often
and improve database throughput considerably without sac-
rificing durability and correct order of writes.

In order to understand the effect of fsync frequency on
the IO throughput, we measured the I/O throughput of a
DuraSSD drive as well as two commercial SSDs and a disk
drive. The frequency of fsync calls was varied from none to
once every write to once every 256 writes. Each of the four
devices was tested with the storage cache turned on and off.
We also included a case where DuraSSD was run with write

Random Write IOPS # of Writes per Fsync
(Ciﬁ?‘é‘zze) Storage Cache 1 4 8 16 32 64 | 128 256 | no fsync
HDDY OFF 58 111 130 143 151 155 156 157 158
(16MB) ON 59 135 184 234 251 335 375 381 387
SSD-A OFF 168 332 397 441 463 479 480 490 494
(512MB) [ON 256 750 | 1,207 | 2,219 | 3,595 | 5,004 | 6,794 | 8,782 11,681
SSD-B OFF 603 732 889 995 | 1,042 | 1,082 | 1,114 | 1,124 1,157
(128MB) ON 655 | 1,762 | 2,319 | 3,152 | 4,046 | 5,177 | 6,318 | 8,575 8,456
DuraSSD OFF 249 330 438 467 482 490 495 497 498
(s12MB) | O 225 836 | 1,556 | 2,556 | 5,020 | 6,069 | 10,582 | 12,647 15,310
ON (NoBarrier) || 14,484 | 14,800 | 14,813 | 14,824 | 14,840 | 14,863 | 15,063 | 15,181 15,458

TDisk: Seagate Cheetah 15K.6 146.8GB

Table 1: Effect of fsync and flush cache on 4KB page size random write IOPS

barrier turned off for comparison. The fio tool was used for
the benchmark. The results summarized in Table 1 clearly
show that the I/O throughput of both disk drives and SSDs
is seriously affected by the frequency of fsync calls. This
also demonstrates that if a storage device is not burdened
with flushing its cache explicitly, which is feasible with a
DuraSSD drive, the device will be able to deliver its best
possible performance.

2.3 Magnified Write-Back Effect

Modern storage devices from disk drives to flash mem-
ory SSDs are equipped with an internal DRAM cache pri-
marily for sequential prefetching and write buffering. Write
buffering is particularly effective for random workloads. It
has been shown that a write buffer as large as 0.1% of the
storage can absorb write bursts and process them without
stall for a variety of workloads [15, 29]. However, if the in-
ternal DRAM cache is volatile, there is a danger that data
written only in the device cache will be lost upon a power
failure or crash. So it is not safe to keep dirty pages in the
write buffer for a long duration, and this becomes a limiting
factor on the effective utilization of write cache. However, if
the internal DRAM cache is durable (i.e., non-volatile), as
is the case with DuraSSD, write buffering can be fully ex-
ploited to minimize write stall and maximize the utilization
of storage substrate.

The effect of write buffering is more significant with flash
memory SSDs than disk drives.® Table 1 compares the ran-
dom write throughput of DuraSSD with that of a mag-
netic disk drive and two commercial flash memory SSDs
(denoted as SSD-A and SSD-B) with different amounts of in-
ternal cache. In the case of the three flash memory SSDs, the
write throughput with no fsync was about approximately
13 ~ 68 times higher than that with fsync for every write.
On the other hand, the improvement ratio was no more
than seven times with the disk drive. This is mainly because
there is an ample opportunity of parallelism in modern flash
memory SSDs [4, 16], while there is practically none in disk
drives. Most flash memory SSDs have a multi-channel ar-
chitecture where each channel connects two or more flash
memory packages. A flash memory package contains typi-
cally two or four flash memory chips that can operate in
parallel, each of which also supports parallel operations with

!Similar observations have been reported in the industry [10,
32].

532

two or more planes. For example, the theoretic upper bound
on the degree of parallelism is 256 for an SSD with 8 chan-
nels, 4 packages per channel, 4 chips per package, and 2
planes per chip.

A large durable cache of DuraSSD enables it to accommo-
date many concurrent writes without being limited by data
protection need. Combined with the pure electronic perfor-
mance of flash memory chips and the multi-channel archi-
tecture, DuraSSD can sustain high write throughput with
no or less severe stall even in the presence of write bursts.
It should also be noted that the burden of maintaining the
mapping information persistently will be ameliorated with a
durable cache in DuraSSD, because it does not have to flush
(part of) the mapping table to flash memory for every single
page write operation.

2.4 Effectiveness of a Small Page

The page size, as a unit of I/O operations, has steadily
increased in the OLTP database engines for the past years.
Many commercial database servers choose a page of 8KB as
the default size. The most recent releases (versions 5.5 and
5.7) of an open source MySQL have increased the default
page size to 16KB. This trend of using a large page size has
been fueled and justified by the need to hide a long latency
of mechanical disk drives.

As flash memory SSDs become more and more common
in warehouse-scale computer systems as well as large OLTP
systems in recent years, the issue of finding an optimal page
size has been revisited. A few recent studies have found that
a small page size can improve the performance of a flash
memory based database engine for OLTP workloads where
small random accesses are dominant [16, 26]. This is because
a flash memory SSD, as a pure electronic device, exhibits ex-
tremely low latency and high I/O throughput and using a
small page can minimize the amount of redundant data be-
ing read from and written to storage. The latter is even more
relevant to improving I/O performance for OLTP applica-
tions, which usually update only a small fraction of a data
page. Other notable positive effects of using a smaller page
is that the page fault rate can be lower due to the buffer
pool being polluted less by irrelevant data and the level of
concurrency can be higher due to the smaller granularity of
locking [6].

The size of a page, of course, cannot be smaller than the
smallest unit of I/O supported by a storage device. The pos-

itive aspect of that is there is no more juggling for selecting
a page size and one can simply pick the smallest unit of I/O.
Since a page is the smallest unit of addressing in flash mem-
ory chips, an obvious choice is to set the size of a database
page equal to the size of a flash memory page. The most
common size of a flash memory page is 4KB for modern
enterprise-class flash memory SSDs. However, there is a se-
rious caveat with using a small page size when the cache in
the storage device is flushed often by fsync calls.

Page Size
Random IOPS T6KB | sKB | 4KB
Read-only (128 threads) 29,870 | 57,847 | 89,083
Write-only (1-fsync) 196 206 225
Write-only (256-fsync) 4,563 | 7,978 | 12,647
Write-only (128 no-barrier) || 13,446 | 25,546 | 49,009
(a) DuraSSD
Page Size

Random IOPS TGKB | SKB | IKB

Read-only (128 threads) 516 | 528 | 538

Write-only (128 threads) 428 | 439 | 444

(b) Harddisk (Seagate Cheetah 15K.6 146.8GB)

Table 2: Effect of page size on IOPS

Table 2 shows the I/O throughput of an SSD and a disk
drive measured by running the fio tool with different fre-
quencies of fsync calls. When fsync calls were used infre-
quently (once in 256 writes), the I/O throughput increased
about 170 percent by reducing the page size from 16KB to
4KB. A similar improvement (about 190 percent) was ob-
served for read only operations, which did not require any
fsync call. On the other hand, when fsync calls were used
frequently (once every write), the increase in I/O through-
put obtained by reducing the page size from 16KB to 4KB
was only about 15 percent. This is an evidence that the over-
head of flushing a device cache is a more dominant factor
than the amount of data transfer in determining the I/O
throughput.

This also implies that the throughput of a conventional
flash memory SSD may be compromised by frequent fsync
operations, when a smaller page is chosen, because flushing
the cache cannot be postponed indefinitely. In this regard,
DuraSSD, which does not require explicit cache flushing, can
make the best use of a small page size without the danger
of losing data. As is shown in Table 2, DuraSSD can achieve
about three times higher I/O throughput by reducing the
page size from 16KB to 4KB. On the other hand, in the
case of disk drive, the improvement ratio is only about four
percent.

3. ARCHITECTURE AND IMPLEMENTA-
TIONS

We have developed a new type of flash memory SSD called
DuraSSD. DuraSSD comes with a durable internal cache and
helps achieve atomicity, durability and proper ordering of
writes at the minimal cost. Figure 3 illustrates the inter-
nal architecture of DuraSSD. There are four major compo-
nents in the DuraSSD: (1) durable cache, (2) atomic writer,

533

Write Request
! Host/Storage Interface] :

10 Queue -
[Ppi]

Battery-Backed Cache Power-Off|

Detection

Recovery
Manager

Flush List l
’ Dump Area ‘

Flash Chips

Page Mapping Table Buffer Cache

LPN
P1

PPN

Pi

Pn

Figure 3: DuraSSD architecture

(3) cache manager (or flusher), and (4) recovery manager.
This section details each of the components, and describes
how DuraSSD can guarantee the key storage properties that
database requires.

3.1 Durable Cache

The durable cache in DuraSSD refers to a DRAM-based
buffer cache backed by small capacitors. The durable cache
is composed of a set of DRAM chips of 512MB in total and
fifteen tantalum capacitors. Figure 4 shows the front and
back planes of a DuraSSD prototype. The tantalum capaci-
tors are attached to its back plane. The retail price of fifteen
tantalum capacitors is around five USD in total, which ac-
counts for about one percent of the total DuraSSD price. We
understand that new non-volatile memory technologies such
as PCM, RRAM, STT-MRAM will be a more solid and ver-
satile solution than a battery-backed approach, since they
can provide more stable performance with a fewer thermal
issues. However, we expect that such new memory technolo-
gies will need more time to mature and become economical.

Tantalum
Capacitors =

Figure 4: DuraSSD with cache and capacitors

DuraSSD maintains a pool of buffered pages and a page
mapping table in the durable cache. These two data struc-
tures have to be kept consistent and secured persistently in
the storage media. Thus the total capacity of tantalum ca-
pacitors must be large enough to flush all the data from the
data structures to the storage media upon a power failure.

This will help preserve the device state consistent and im-
plement idempotent recovery from a failure. The tantalum
capacitor has a smaller form factor and lower cost overhead
than the super capacitor. The time duration its back-up
power can sustain is normally several milliseconds, so the
fifteen tantalum capacitors of DuraSSD only allow flushing
cached data of dozens of mega bytes.

3.1.1 Buffer Pool

The buffer pool is mainly used as write cache [29] to im-
prove random write performance. The buffer pool should
be able to handle the batch that the I/O command queue
allows. The SATA NCQ (Native Command Queuing) can
queue up to 32 commands at the same time. For fair resource
sharing, each command may have a quota of the buffer pool.
A typical enterprise class SSD has a high degree of internal
parallelism. (See Section 2.3.) To maximize the throughput,
all channels and data pipelines over parallel planes need to
be filled as much as possible. For this purpose, the buffer
pool is organized as a set of queues for buffered writes and
schedules the write-backs considering the parallelism and
wear-leveling.

NCQ allows multiple commands to be drained to leverage
the internal parallelism. Therefore, the buffer pool needs a
flow-control mechanism between the command queue and
the buffer queues. The flusher of DuraSSD continuously pulls
the write-backs from the buffer queues and writes them to
flash memory in the FIFO manner, anticipating the buffer
queues will be filled in the meantime. If a page is updated
frequently, there can be multiple copies of the page in the
buffer queue. When that happens, old copies except the lat-
est one are discarded to improve the device endurance.

Then, how large should the buffer pool be to streamline
data between the host and the device? Let us use the ex-
ample presented in Section 2.3. The page size is 4KB and
the maximum degree of parallelism is 256. The buffer pool
thus needs 256x 4KB pages (or one megabyte) to fill all
the pipelines up. Moreover, it is desired to support a dou-
ble buffering scheme so that writing cached data to storage
media and buffering data from the host in the buffer pool
can be overlapped. In summary, even after adding some ex-
tra space to absorb bursty writes, a buffer pool of several
megabytes would be good enough to achieve the maximum
bandwidth of write traffics.

3.1.2 Mapping table

When a page is successfully written to the storage me-
dia, the flusher releases the buffer frame for recycling and
updates the page mapping information with a new physical
page address. As discussed in Section 2.4, a small database
page can deliver better performance, and its proper align-
ment with a NAND page will be a clever way to optimizing
the performance.

To leverage the benefits of a small page, DuraSSD em-
ulates 4KB pages over 8KB NAND pages via a 4KB page
mapping scheme. The disparity between physical page size
(i.e., 8KB) and mapping granularity (i.e., 4KB) will intro-
duce overhead to the device. For instance, a read or write
of 4KB page from or to a NAND page still requires a 8KB
page 10, and it needs to filter out unintended 4KB data.
Under a heavy random write workload, however, the buffer
pool should be able to find a pair of pages that can be com-

534

bined and written together into a NAND page even under
the 4KB mapping scheme.

The SSD capacity used in this paper was 480GB. With
a 4KB page as a mapping unit, the page mapping table re-
quires 120 million entries, each of which will take four bytes
to represent a physical page in the address space of 480GB.
This amounts to 480MB. As a rule of thumb, the moder-
ate cache size of an SSD would be just about a megabyte
per GB, that is, 0.1% of an SSD capacity. The reduction of a
mapping unit from 8KB to 4KB doubles the DRAM require-
ment, which increases the total cost of a DuraSSD about one
percent. In summary, the 4KB page mapping improves the
raw 1/O performance and the hit ratio of the buffer pool at
the expense of one percent cost overhead.

3.2 Atomic Writer

In general, an I/O operation is considered complete, once
a storage device sends an ack for the operation back regard-
less of it being delivered to the host or not. When a write
command is drained from the I/O command queue, its data
are streamed from the host to the durable cache of DuraSSD.
The write command is then marked as complete when the
data transfer is finished. With the durable cache, the atom-
icity of the write command is guaranteed from the moment
when the command is marked as complete.

Consider a situation where a power failure happens after
or while a write command is processed. On a power fail-
ure, all the write-backs are flushed from the durable cache
to a persistent segment in the storage media called a dump
area. When they are written to the dump area, their page
mapping entries are not updated for fast flushing. At the
restart time, for all the complete write commands, the re-
covery manager replays the write-backs stored in the dump
area and reflects the changes to the page mapping table.
While replaying write-backs will delay the system restart, it
guarantees the atomicity and durability of complete write
commands. For incomplete write commands, its write-backs
will be simply discarded from the dump area. This guar-
antees the atomicity (or rollback) of incomplete write com-
mands.

3.3 Flush-Cache Command in Durable Cache

The T13 standard of the ATA storage interface supports a
flush-cache command to flush the write cache to persistent
storage media [24]. This command is generated from a fsync
system call and is typically used to guarantee the durability
of data and the ordering of writes. Especially, for an out-of-
order I/O command queue like SATA NCQ, the flush-cache
command can help enforce an ordering.

Since DuraSSD does not rely on write-barrier, there exists
a risk of command reordering, which can violate the order-
ing semantics of database. In order to avoid the trouble, we
have implemented an ordered version of NCQ so that the or-
der of commands can be preserved as well as the persistence
of them. Alternatively, we can enable write-barrier but im-
plement the semantics of flush-cache in a different way to
ensure all the commands that have arrived before the flush-
cache command will be processed before it. We will explore
this alternative for further optimization. Note that the order
of flushing the write-backs from the buffer pool to the stor-
age media does not cause a database inconsistency problem,
because only the latest version of a page is written to the
storage media.

3.4 Recovery Manager

3.4.1 On power failure

DuraSSD is equipped with a dedicated circuit logic to de-
tect a power failure, upon which the recovery manager is
invoked. Since the page mapping table accounts for most of
the DRAM space, it will be both time and power consum-
ing to flush the entire mapping table to the dump area. To
reduce the amount of data to flush, an incremental backup
technique can be used to track modified entries and flush
only those entries to the dump area upon a power failure.
On the other hand, the buffer pool and its in-memory data
structures are relatively small and can be flushed entirely to
the dump area.

Obviously, it is important to minimize the time taken to
flush modified mapping entries and the buffer pool to the
dump area upon a power failure. DuraSSD ensures that a
group of clean flash memory blocks are always available for
the dump area during normal processing time, so that the
key data structures can be flushed as fast as possible without
encountering a garbage collection. Finally, for recovery at
the next boot-up, it is necessary to mark that the storage
device was shutdown abnormally due to a power failure.

3.4.2 On reboot

At the reboot time, the first step taken by DuraSSD is to
recharge the capacitors so that data can be protected from
another power failure during the recovery process. If the
flag for an emergent shutdown is set, the recovery manager
is invoked. The recovery manager rebuilds the page map-
ping table by merging the most recent mapping table stored
persistently in flash memory with the modified mapping en-
tries dumped at a power failure. Then, it restores the buffer
pool and its metadata from the dump area. Once the buffer
pool is restored completely, the recovery manager clears the
dump area and resets the emergent shutdown flag.

Note that the buffer pool stored in the dump area must be
self-contained for the sake of recovery. The buffer pool should
maintain the information about the logical page number for
every valid page frame in the pool, which can be embedded
or stored in a separate data structure. The information on
the logical page numbers is used to update the page mapping
table after the pages are propagated from the dump area to
the storage media.

4. PERFORMANCE EVALUATION

This section presents the experimental analysis carried out
to understand the impact of a durable cache on the perfor-
mance of relational and NoSQL database systems. The ex-
periments were done with transactional NoSQL workloads
such as LinkBench and YCSB as well as the TPC-C bench-
mark [5, 7, 17]. We ran the database servers under different
configurations so that the effect of a durable cache can be
identified separately by redundant writes, fsync calls and
page sizes.

4.1 Workloads

We ran the LinkBench and YCSB workloads on the open
source systems MySQL and Couchbase, respectively. Couch-
base is one of the most popular document-oriented key-value
stores. The TPC-C workload was run on a commercial rela-
tional database system. As NoSQL workloads, transactions
of LinkBench and YCSB are much smaller than those of

535

a traditional TPC-C workload. At the same time, they are
quite similar to a TPC-C workload in that both produces a
large number of small random reads and writes. Below are
described the characteristics of the two NoSQL workloads
and the TPC-C benchmark program.

LinkBench LinkBench is a configurable open-source
database benchmark for a large-scale social graph [5].
This benchmark reflects the characteristics of social
graph data at Facebook where the majority of read re-
quests are served by a caching layer. This reduces the
temporal and spatial locality of read requests reach-
ing the underlying database servers [19]. However, the
overall workload reaching the database servers is still
read intensive with just about 30% writes. The force
index option was turned on in order to avoid I/O
operations required additionally for query optimiza-
tion. Also, the buffer_flush_neighbors option, which is
to flush any neighbor pages together for a dirty victim
page, was turned off in order to reduce unnecessary
write overhead.

YCSB Yahoo! Cloud Serving Benchmark (YCSB) is a
benchmark framework created for evaluating cloud
systems [7]. YCSB consists of five workload types.
Since all the other workloads except Workload-A
are read-only, Workload-A was used to evaluate the
durable write caching effect of DuraSSD. In compari-
son with TPC-C, YCSB mimics web applications run-
ning a huge number of simple queries, each of which
touches a single record [34].

TPC-C We used the Benchmark Factory to evaluate the
impact on the database throughput by DuraSSD and
other storage devices. The Benchmark Factory is a
database performance testing tool that allows you
to conduct database workload replay and industry-
standard benchmark testing [28]. The TPC-C bench-
mark was done with one of the most popular commer-
cial database management system.

4.2 Experimental Setup

The experiments were done on a Linux platform with
3.5.0 kernel. It was equipped with four Intel Xeon(R) E5-
4620 CPU sockets, eight cores per socket and 96GB DRAM
per socket (384GB in total). The host machine had two
DuraSSD drives of 480GB each, one of which was used as the
main storage and the other as a database log device. Both
DuraSSD drives were connected to the host via an SATA 3.0
interface that supports 6 Gbps.

The XFS file system was used for MySQL and Couchbase
servers, and the ezt/ file system was used for the commer-
cial database server. In both cases, the direct I/O option
(0_DIRECT) was set on for all the storage devices to reduce
the effect of file system buffer caching. The database log tail
was set to flush by each committing transaction, but three
log files of 4GB each were used to minimize the interference
from logging. The benchmarking clients of LinkBench and
YCSB were run with the database servers on the same hard-
ware to avoid networking delay. The benchmarking clients
of Benchmark Factory was run on a separate hardware con-
nected to the servers via Gigabit Ethernet, because Bench-
mark Factory was not available on the Linux platforms.

4.3 Run-Time Performance

This section first demonstrates the effectiveness of durable
cache in SSD by evaluating the LinkBench performance of
MySQL InnoDB engine with and without a durable cache.
Similarly, for the YCSB and TPC-C benchmark, the perfor-
mance of Couchbase and the commercial relational database
server were evaluated with and without a durable cache.
Each performance measurement presented in this section
was an average of three runs or more.

4.3.1 MySQL for LinkBench

The version of MySQL used in the experiments was the
most recent 5.7.2-m12 development release. We created three
LinkBench databases of 100GB with different page sizes of
4KB, 8KB, and 16KB to compare the tuning effect of page
size. When the database was created, all tables were parti-
tioned 32 ways to reduce the mutex contention, thus mini-
mizing the system degradation from concurrency. Through-
out all the LinkBench experiments, 128 client threads were
concurrently run. For steady performance measurement, the
LinkBench was pre-run for 600 seconds warm-up time to fill
up the InnoDB buffer cache. A total of 6.4 million transac-
tions (50,000 per each client) were run in each experiment.

Write barriers and Double write buffer

The first set of experiments was carried out to evaluate the
impact of write barrier and double write buffer on database
throughput. We ran the MySQL server with the LinkBench
workload under four different configurations created by turn-
ing each of the two options on and off. In Figure 5 and the
rest of the section, we will use the following notation to spec-
ify different configurations.

write-barrier / double-write-buffer

Figure 5 shows transaction throughput measured under
the four configurations with three different page sizes, when
the database buffer size was fixed to 10GB. Recall that un-
der the ON/ON configuration, which is a default setting
of MySQL/InnoDB, every fsync call sends a flush cache
command to the storage device and every logical page write
causes two physical pages writes for an atomic and durable
update.

The most important observation made in the figure is that
the largest gain in throughput was obtained when the write-
barrier option was turned off. Transaction throughput in-
creased about six times just by turning it off in the case of
4KB page, regardless of the double-write-buffer option.

On the other hand, when the double-write-buffer option
was turned off, the gain in transaction throughput was about
a factor of two with the write-barrier option on and about
25% with the write-barrier option off in the case of 4KB
page. The latter was lower than but not too much off from
the 40% improvement reported in the previous work car-
ried out with FusionIO Atomic Write Extension [25]. The
gap in throughput was wider when the write-barrier was on,
because frequent flush-cache operations made it difficult to
hide the latency of twice increased write operations by the
double—write—buffer option.

Overall, the best throughput was obtained when the
smallest page was used under the OFF/OFF configuration,
while the worst was obtained when the largest page was used
under the ON/ON configuration. Between these two cases,
the gain in transaction throughput was more than 20 times.

536

35000

16KB =
30000 | 4KB mmmmm
(%]
o
= 25000
c
[e]
3
& 20000 |
o
o
» 15000 [
c
S
3
$ 10000 |
c
©
- HII
o Lol

ON/ON ON/OFF OFF/ON OFF/OFF
Write-Barrier / Double-Write-Buffer

Figure 5: LinkBench transaction throughput

This indicates that DuraSSD, which can be used under the
best OFF/OFF configuration with the smallest page size,
is capable of yielding more than an order of magnitude im-
provement in transaction throughput without compromising
the consistency of database.

There is a little anomaly in the results shown in Figure 5.
When the write-barrier option is on, the throughput of 4KB
was a little lower than that of 8KB. This was because the
depth of B™-tree indexes increased when the page size was
reduced from 8KB to 4KB, and the write IOPS was not
affected much by different page sizes when fsync call was
used frequently. The latter is shown in Table 2.

Effects of Page Size on DuraSSD

Except for the anomaly described above, a smaller page
helped achieve higher transaction throughput than a large
page. More importantly, when the write-barrier option was
off, the performance gain obtained by using a small page
was significant. More than two-fold increase in transaction
throughput by reducing the page size from 16KB to 4KB
was much higher than 30 to 50% increase reported previ-
ously in the literature [16, 26]. This is because a flash mem-
ory SSD can exploit the internal parallelism maximally when
the write barrier is off.

Another benefit from using a small page is an improved
cache effect. Figure 6(a) shows the cache misses observed
from running the LinkBench workload with different page
sizes. These measurements were obtained from MySQL run-
time statistics reports. Though the miss ratios were mea-
sured under the OFF/OFF configuration, we believe they
would represent all the other configurations as well, because
cache misses happen in the buffer pool of a host system.

One thing that can be noticed in Figure 6(a) is that the
miss ratio decreased more quickly with 4KB page size. This
lower miss ratio, in combination with the higher IOPS with
a small page shown in Table 2, contributes to the widening
throughput gap among the three page sizes as the size of
buffer pool increases, as shown in Figure 6(b). No saturation
of throughput increase was observed in Figure 6(b) due to
the lack of locality of accesses in the LinkBench workload.

9 35000
16KB 4KB —a—
8KB —@— 8KB —e—
4KB —A— 30000 | 16KB E
81 1 @
g
® g 25000 b
< 7r E c
K] 8
3 & 20000 | 1
8 8 1 &
= o 15000 - b
] 5
5 5¢ : B
o & 10000 | b
g
4t 1 T 5000 | .
3 Il Il Il Il Il 0 Il Il Il Il Il
2 4 6 8 10 2 4 6 8 10
Buffer Pool Size (GB) Buffer Pool Size (GB)
(a) Buffer miss ratio (OFF/OFF) (b) Varying buffer size (OFF/OFF)
Figure 6: LinkBench buffer miss ratio and TPS (100GB DB, OFF/OFF)
Transactions ON/ON with 16KB Pages OFF/OFF with 4KB Pages
1/0 Type Name Mean | P25 | P50 | P75 | P99 Max Mean | P25 | P50 | P75 | P99 | Max
Get_Node 67.0 2 4 8 900 4238.1 1.5 0.9 2 2 7 533.1
Read Count_Link 45.5 0.6 3 4 800 3274.6 1.2 0.6 | 0.9 2 5 42.8
Get_Link_List 65.3 0.6 1 5 1000 | 14892.6 1.4 0.6 2 2 7 515.4
Multiget_Link 67.6 0.6 2 5 1000 | 3047.2 1.3 0.6 0.9 2 7 44.1
ADD_Node 51.6 6 8 9 1000 | 4891.1 8.9 8 9 10 16 | 523.0
Delete_Node 82.2 8 10 16 1000 | 4267.4 9.6 9 10 11 17 | 539.1
Write Update_Node 86.8 8 10 17 | 2000 | 5779.1 9.8 9 10 11 18 | 540.2
Add_Link 214.9 11 22 300 | 2000 | 7051.0 11.2 9 11 13 23 540.3
Delete_Link 115.4 3 7 93 | 2000 | 4841.2 5.4 0.9 3 10 20 | 522.1
Update_Link 217.6 9 22 300 | 2000 | 9026.1 11.1 10 11 11 23 543.1

Table 3: Distribution of LinkBench transaction latency (in millisec)

Tail Tolerance of DuraSSD

As is mentioned in Section 1, the high tail latency poses se-
rious challenges for online service providers, as even a small
increase in latency may result in reduced traffic and revenue.
Another set of experiments was carried out to evaluate the
impact of DuraSSD on the latencies of read and write trans-
actions. The latencies were measured when the buffer pool
size was fixed to 10GB, and are summarized in Table 3.

This table compares the default configuration of MySQL
(with 16KB pages under the ON/ON configuration) and the
best configuration for DuraSSD (with 4KB pages under the
OFF/OFF configuration) in terms of latencies at 25, 50, 75
and 99 percentiles as well as the minimum and maximum
latencies for ten different types of transactions. The latency
statistics were reported by the LinkBench script at the end
of each benchmark run.

Table 3 clearly shows that the best configuration reduced
the latency significantly in all measurements. Specifically,
the mean latency was reduced by a factor of 5 to 45, and
the maximum latency was reduced by a factor of 8 to 60.
More importantly, the latency at 99 percentile was reduced
roughly by two orders of magnitude across the board. Once

537

again, this is clear evidence that DuraSSD can contribute
greatly to the tail tolerance by lowering latencies at the tail
of distribution.

We have observed that in LinkBench workload every other
read request was blocked by writes on a page fault on aver-
age. This was the main reason DuraSSD could lower laten-
cies considerably for both read and write requests by avoid-
ing redundant writes and by flushing the device cache as
infrequently as possible.

4.3.2 Commercial DBMS for TPC-C

We used the Benchmark Factory [28] to evaluate impact of
DuraSSD on the TPC-C performance. The number of ware-
houses was set to 1,000 to create a TPC-C database in the
same scale as the one used in the LinkBench experiment.
The size of database was approximately 100GB and the size
of the database buffer was set to 2GB for a commercial re-
lational database server tested in the TPC-C experiment.

In this experiment, we used the ext/ file system instead of
XFS, because the commercial database server opened files
with the 0_DSYNC option expecting a write barrier to be re-
quested for every page it wrote. This standard 0_DSYNC se-
mantics was supported by ext4 correctly but not by XFS.

With XFS not requesting a write barrier, the database con-
sistency could be compromised.

Page Size
TpmC I6KB | 8KB | 4KB
Barrier On 4,291 4,845 7,729
Barrier Off || 65,809 | 110,400 | 150,815

Table 4: TPC-C throughput measured in tpmC

The transaction throughput yielded by the commercial
database server changed significantly by turning write bar-
rier off. As is shown in Table 4, the throughput increased by
a factor of 15.3 to 22.8 for different page sizes. This through-
put increase was approximately three times higher than was
observed in the LinkBench experiment, which was a fac-
tor of six in Figure 5. This is mainly because the commer-
cial database server requested a write barrier for each page
write request and the database buffer size was set to 2GB
(five times smaller than MySQL). This made the caching ef-
fect of the durable cache in DuraSSD more pronounced. The
trend in throughput increase across different page sizes was
almost identical to the LinkBench results. The throughput
increased by a factor of 1.8 to 2.3 by changing the page size
from 16KB to 4KB regardless of the write barrier flag. This
is consistent with the page size tuning effect observed in the
MySQL LinkBench experiment.

4.3.3 Couchbase NoSQL

To analyze the effect of DuraSSD on NoSQL workloads,
we ran a document-oriented NoSQL database, Couchbase,
against the YCSB benchmark. Couchbase stores a JSON
document in the value part of a key-value pair. Keys are
maintained in a BT-tree for efficient lookups. Updating a
document changes all tree nodes on a path from the root to a
leaf pointing to the document. Couchbase writes all the tree
nodes to be updated as well as the new document to storage
as a single unit. To support the atomicity and durability, the
update is appended to storage without modifying existing
data and flushed synchronously to storage by a fsync call.

The average size of key-value records in YCSB was 1KB.
The depth of a B™-tree was four, and the size of a tree node
was 4KB by default. Thus, the size of each update was about
20KB including the tree nodes and a document. Couchbase
can adjust the fsync frequency in order to trade durability
for performance by changing the value of a batch-size pa-
rameter. If the batch-size is set to a positive integer, say
k, a fsync call is executed every k updates.

The throughput of Couchbase was measured in opera-
tions per second (OPS), where an operation is much like a
transaction in an OLTP system. The experiment was done
with workload-A of YCSB benchmark [7] against a 100GB
database. The workload-A was chosen, because it was the
only one including write operation among all five workloads
of YCSB benchmark. The workload-A consists of 50% read
and 50% update operations by default. We also measured
the throughput when the workload was 100% updates. The
replication option of Couchbase was not used, because we
were interested in evaluating the impact of DuraSSD on per-
formance of an individual node.

Table 5 summarizes the throughput of Couchbase mea-
sured under different configurations created by turning the
write barrier on or off and changing the batch size from one

538

to 100. The throughput was measured by running 200,000
operations in a single thread.

batch-size 1 2 5 10 100
Update 100% || 206 | 398 | 988 | 1,954 | 4,692
Update 50% || 195 | 390 | 1400 | 2,041 | 4,921
(a) With write barriers on
batch-size 1 2 5 10 100
Update 100% || 2,404 | 3,464 | 3,826 | 4,959 | 5,101
Update 50% || 2,406 | 3,464 | 4,209 | 5,461 | 6,208

(b) With write barriers off

Table 5: Throughput of Couchbase for YCSB

When write barrier was on, the effect of £sync frequency
was shown clearly in the throughput measurements. The
throughput of batch-size one was more than 20 times lower
than that of batch-size 100 in both cases of 100% updates
and 50% updates. On the other hand, when write barrier
was off, the gap in throughput between batch-size one and
batch-size 100 became much narrower to a factor of 2.12 to
2.58. Evidently Couchbase can achieve an order of magni-
tude improvement in throughput by force-writing updates
less frequently. This also provides a clear evidence that
DuraSSD can help Couchbase improve its throughput signif-
icantly while it guarantees the consistency of asynchronous
writes as if they were done synchronously.

S. RELATED WORK

By making the DRAM write cache durable with the help
of tantalum capacitors and embodying several firmware algo-
rithms inside it, DuraSSD can reliably support the atomicity
of writes at the storage level against unexpected power fail-
ures. By running it in write-back mode, OLTP applications
can take advantage of its full potentials without the dan-
ger of losing data. This section briefly reviews and compares
with DuraSSD existing work in durable memory, reliability
of SSDs, device level support for atomic write, and page size
tuning.

5.1 Durability by Reliable Memory

The idea of making a cache embedded in a storage device
durable is not new. When it was proposed the track buffer of
a disk drive could be used as a write cache, the track buffer
was assumed to be backed up by battery [29]. The durable
write cache in a disk drive was not successful, because the
size of a track buffer was relatively small and a large expen-
sive capacitor was needed to flush the write cache due to
the mechanical characteristics of a disk drive. Moreover, as
is shown in Table 1, the performance gain by the durable
write cache in a disk drive is limited.

There have been several attempts to make a database
system deliver high throughput and low-latency by mak-
ing the main memory of a host system durable entirely or
partially. For example, it has been shown that high transac-
tion throughput can be achieved by storing write-ahead log
data in a small amount of host memory backed up by bat-
tery and thus by avoiding the high latency of log writes on a
slow disk drive upon transaction commits [8, 30]. The use of
reliable memory was also suggested for simplifying the de-
sign of recovery logics in main memory database systems as

well as removing the overhead of check-pointing and write-
ahead log writes to a disk drive [11]. Similarly, it has been
shown that reliable memory can be used as a replacement of
volatile buffer cache in a disk-based database system [23].

Those earlier attempts assumed that DRAM could be
made durable either by a battery-backed memory board
or uninterruptable power suppliers. Due to the high cost,
however, neither of these methods has been adopted widely
except for expensive high-end storage appliances. On the
other hand, the write cache in a flash memory SSD can be
backed up by an inexpensive tantalum capacitor, because
much smaller power is required to flush the cached data to
flash memory chips than disk drive tracks. Moreover, the
benefit of a durable write cache in an SSD is, as is shown in
Table 1, significant enough to justify the marginal cost for
battery backup.

5.2 Reliability of SSDs

Even well-prepared and experienced data center opera-
tors such as Amazon are still suffering from frequent power
loss [27, 33]. Recently, an interesting experiment was carried
out to understand how flash memory SSDs behave against
power failure [33]. In the experiment, various power faults
were injected directly to fifteen commercial SSDs and two
disk drives using a hardware specially designed for the pur-
pose. The reported results show that thirteen out of the
fifteen SSDs tested exhibit various anomalies under power
faults such as shorn writes, metadata corruption, and unse-
rializable writes.

Although it is not known how exactly these anomalies
would influence a database system with respect to maintain-
ing the consistency, it is not difficult to see they will make
the design of a database system more sophisticated so that
it can be prepared for all those anomalies. Considering that
data centers are steadily moving towards all-flash, it will be
extremely beneficial to have flash memory SSDs prepared
properly against power failure. The DuraSSD presented in
this paper guarantees the atomicity, durability and correct
write ordering of data pages even in the event of sudden
power failure. We believe that this will be an essential and
critical feature required to support database consistency and
recovery in the warehouse-scale computing and traditional
database environments.

5.3 Atomic Page Write

To the best of our knowledge, FusionIO Atomic Write
Extension is the only device available in the market that
supports atomicity of page writes at the storage level [25].
It supports atomicity of page writes by altering its firmware
or flash translation layer so that all sectors belonging to an
atomic write are appended to a contiguous location of flash
memory. Besides, a bit flag is associated with each of the
sectors to detect whether a page write is done completely or
partially.

Moreover, the atomic write feature of FusionlO is available
only through its vendor-specific Virtual Storage Layer (VSL)
interface, and need to be enabled at boot time via a special
toctl() command. Therefore, their approach is less portable
and not widely adopted in practice despite its promising
performance benefit. In contrast, DuraSSD does not require
any change in the storage interface and provides a guarantee
of atomic and durable page writes without write barriers and
frequently flushing the device cache.

539

5.4 Page Size Tuning

A few recent studies show that a smaller page size is
more effective for flash memory SSDs running OLTP ap-
plications [16, 26]. This is consistent with what we ob-
served in the LinkBench and TPC-C benchmarks carried
out with DuraSSD. However, the performance gain from us-
ing DuraSSD was much more significant. This is because
DuraSSD was able to reduce write latencies more dramati-
cally than the flash memory SSDs used in the previous work.
Since DuraSSD reduces the latency of a random write of any
size commonly used in practice, it can take advantage of us-
ing a small page without any serious negative effect.

6. CONCLUSION

In order to meet the strict requirements of ACID trans-
actions, many database systems rely on redundant writes
and frequently flushing device caches to stable storage (by
fsync calls). This approach has several disadvantages, es-
pecially with modern flash memory SSDs. First, redundant
writes halve the update throughput as well as the lifespan of
SSDs. Second, frequent £sync calls deprive the write cache of
the opportunity to exploit the massive parallelism inside an
SSD for better random write throughput. In order to tackle
these problems, we have proposed DuraSSD, which provides
a storage level guarantee that a page write is atomic and
durable once it is transferred to the DRAM cache backed up
by cost-effective tantalum capacitors. The architecture and
elaborate firmware algorithms for supporting atomic write,
cache management, and recovery are also presented.

DuraSSD offers many benefits. First, a database system
need not write the same page twice just for the sake of its
atomicity any longer. Second, DuraSSD can be deployed as
a write-back storage device without compromising the dura-
bility and write ordering so that its internal parallelism can
be fully utilized for maximum write throughput. Third, with
a durable cache, DuraSSD does not have to be forced to flush
its cache, and hence can manage its device cache more effi-
ciently and independently of application logics. Fourth, with
no need to flush its cache frequently, DuraSSD can take ad-
vantage of using a small page size for higher throughput.

We have evaluated a DuraSSD prototype in the experi-
ments with the LinkBench and YCSB benchmarks as well as
the TPC-C benchmark, and have shown that DuraSSD can
improve transactional database throughput by more than an
order of magnitude. We have also shown that DuraSSD suc-
cessfully addresses the problem of high tail latency, which
is a crucial issue in modern data centers, by significantly
shortening the write latency and limiting the variability of
read latency.

Acknowledgments

This research was supported in part by National Research
Foundation of Korea(NRF)(2012R1A1A2A10044300) and
the IT R&D program of MKE/KEIT [10041244, SmartTV
2.0 Software Platform]. This work was also supported by
Research Resettlement Fund of SNU.

7. REFERENCES
[1] Atomic Commit In SQLite. http://www.sqlite.org/
atomicommit.html, 2012.
[2] MySQL 5.7 Reference Manual. http://dev.mysql.
com/doc/refman/5.7/en/, 2013.

http://www.sqlite.org/atomicommit.html
http://www.sqlite.org/atomicommit.html
http://dev.mysql.com/doc/refman/5.7/en/
http://dev.mysql.com/doc/refman/5.7/en/

3]

[4]

PostgreSQL 9.3.1 Documentation. http://wuw.
postgresql.org/docs/9.3/, 2013.

Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber,
John D. Davis, Mark Manasse, and Rina Panigrahy.
Design Tradeoffs for SSD Performance. In USENIX
2008 Annual Technical Conference on Annual
Technical Conference, ATC’08, pages 57—70, 2008.
Timothy G. Armstrong, Vamsi Ponnekanti, Dhruba
Borthakur, and Mark Callaghan. LinkBench: a
Database Benchmark based on the Facebook Social
Graph. In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data,
SIGMOD ’13, pages 1185-1196, 2013.

Shimin Chen, Phillip B. Gibbons, Todd C. Mowry,
and Gary Valentin. Fractal Prefetching B+-Trees:
Optimizing Both Cache and Disk Performance. In
Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’02,
pages 157-168, 2002.

Brian F. Cooper, Adam Silberstein, Erwin Tam,
Raghu Ramakrishnan, and Russell Sears.
Benchmarking Cloud Serving Systems with YCSB. In
Proceedings of the 1st ACM Symposium on Cloud
Computing, SoCC ’10, pages 143-154, 2010.

G. Copeland, T. Keller, R. Krishnamurthy, and

M. Smith. The Case for Safe RAM. In Proceedings of
the 15th International Conference on Very Large Data
Bases, VLDB 89, pages 327-335, 1989.

Jeffrey Dean and Luiz André Barroso. The Tail at
Scale. Communications of the ACM, 56(2):74-80,
February 2013.

Doug Crowthers. What’s the Deal With Write-Cache
Buffer Flushing? http://www.tomshardware.com/
reviews/ssd-performance-tweak,2911-15.html,
June 2011.

H. Garcia-Molina and K. Salem. Main Memory
Database Systems: An Overview. IEEE Transactions
on Knowledge and Data Engineering, 4(6):509-516,
dec 1992.

Samuel Greengard. eBay Bets On Flash. http://wuw.
baselinemag.com/storage/eBay-Bets-0n-Flash,
August 2011.

James Hamilton. The Cost of Latency. http://
perspectives.mvdirona.com/2009/10/31/
TheCostOfLatency.aspx, October 2009.

Guy Harrison. Flash Tablespace vs. DB Flash Cache.
http://guyharrison.squarespace.com/blog/2010/
1/24/flash-tablespace-vs-db-flash-cache.html,
Jan 2010.

W. W. Hsu and A. J. Smith. The Performance Impact
of I/O Optimizations and Disk Improvements. IBM
Journal of Research and Development, 48(2):255-289,
2004.

Sang-Won Lee, Bongki Moon, and Chanik Park.
Advances in Flash Memory SSD Technology for
Enterprise Database Applications. In Proceedings of
the 85th SIGMOD international conference on
Management of data, pages 863870, 2009.

Scott T. Leutenegger and Daniel Dias. A Modeling
Study of the TPC-C Benchmark. In Proceedings of
ACM SIGMOD, pages 22-31, 1993.

540

(18]

[26]

27]

28]

29]

(31]

32]

(33]

(34]

Raymond A. Lorie. Physical Integrity in a Large
Segmented Database. ACM Transactions on Database
Systems, 2(1):91-104, Mar 1977.

Mark Marchukov. TAO: The Power of the Graph.
http://goo.gl/DBpCrZ, june 2013.

Cade Metz. Flash Drives Replace Disks at Amazon,
Facebook, Dropbox. http://www.wired.com/
wiredenterprise/2012/06/flash-data-centers,
June 2012.

Cade Metz. Apple and Facebook Flash Forward to
Computer Memory of the Future. http://www.wired.
com/wiredenterprise/2013/03/
flash-fusion-io-apple-facebook/, March 2013.

C. Mohan. Disk Read-Write Optimizations and Data
Integrity in Transaction Systems Using Write-Ahead
Logging. In Proceedings of ICDE, pages 324-331, 1995.
Wee Teck Ng and Peter M. Chen. Integrating reliable
memory in databases. The VLDB Journal,
7(3):194-204, August 1998.

Marc Noblitt. Proposal for New Flush Cache
Command. http://www.t10.0rg/t13/technical/
e01126r0.pdf, June 2001.

Xiangyong Ouyang, David W. Nellans, Robert Wipfel,
David Flynn, and Dhabaleswar K. Panda. Beyond
Block I/O: Rethinking Traditional Storage Primitives.
In Proceedings of International Conference on
High-Performance Computer Architecture, HPCA ’11,
pages 301-311, 2011.

Ilia Petrov, Robert Gottstein, Todor Ivanov, Daniel
Bausch, and Alejandro P. Buchmann. Page Size
Selection for OLTP Databases on SSD Storage.
Journal of Information and Data Management,
2(1):11-18, 2011.

Robert McMIllan. Amazon Blames Generators for
Blackout That Crushed Netflix. http://www.wired.
com/wiredenterprise/2012/07/amazon_explains/,
July 2012.

Quest Software. Benchmark Factory for Databases.
http://www.quest.com/benchmark-factory/.

Jon A. Solworth and Cyril U. Orji. Write-Only Disk
Caches. In Proceedings of the 1990 ACM SIGMOD
international conference on Management of data,
SIGMOD 90, pages 123-132, 1990.

Michael Stonebraker. The Design of the POSTGRES
Storage System. In Proceedings of the 13th
International Conference on Very Large Data Bases,
VLDB ’87, pages 289-300, 1987.

Sybase. SQL Anywhere 1/O Requirements for
Windows and Linux. A Whitepaper from Sybase, an
SAP Company, March 2011.

Vadim Tkachenko. SSD, XFS, LVM, Fsync, Write
Cache, Barrier and Lost Transactions. http://goo.
gl/d1lpjNa, November 2009.

Mai Zheng, Joseph Tucek, Feng Qin, and Mark
Lillibridge. Understanding the Robustness of SSDs
under Power Fault. In Proceedings of USENIX
conference on File and Storage Technologies, FAST
"13, pages 271284, 2013.

Roberto V. Zicari. Measuring the Scalability of SQL
and NoSQL Systems. http://goo.gl/ai3nE1l, May
2011.

http://www.postgresql.org/docs/9.3/
http://www.postgresql.org/docs/9.3/
http://www.tomshardware.com/reviews/ssd-performance-tweak,2911-15.html
http://www.tomshardware.com/reviews/ssd-performance-tweak,2911-15.html
http://www.baselinemag.com/storage/eBay-Bets-On-Flash
http://www.baselinemag.com/storage/eBay-Bets-On-Flash
http://perspectives.mvdirona.com/2009/10/31/TheCostOfLatency.aspx
http://perspectives.mvdirona.com/2009/10/31/TheCostOfLatency.aspx
http://perspectives.mvdirona.com/2009/10/31/TheCostOfLatency.aspx
http://guyharrison.squarespace.com/blog/2010/1/24/flash-tablespace-vs-db-flash-cache.html
http://guyharrison.squarespace.com/blog/2010/1/24/flash-tablespace-vs-db-flash-cache.html
http://goo.gl/DBpCrZ
http://www.wired.com/wiredenterprise/2012/06/flash-data-centers
http://www.wired.com/wiredenterprise/2012/06/flash-data-centers
http://www.wired.com/wiredenterprise/2013/03/flash-fusion-io-apple-facebook/
http://www.wired.com/wiredenterprise/2013/03/flash-fusion-io-apple-facebook/
http://www.wired.com/wiredenterprise/2013/03/flash-fusion-io-apple-facebook/
http://www.t10.org/t13/technical/e01126r0.pdf
http://www.t10.org/t13/technical/e01126r0.pdf
http://www.wired.com/wiredenterprise/2012/07/amazon_explains/
http://www.wired.com/wiredenterprise/2012/07/amazon_explains/
http://www.quest.com/benchmark-factory/
http://goo.gl/dlpjNa
http://goo.gl/dlpjNa
http://goo.gl/ai3nE1

	Introduction
	Benefits of DuraSSD
	No Redundant Writes for Atomicity
	Write Barriers without Flushing
	Magnified Write-Back Effect
	Effectiveness of a Small Page

	Architecture and Implementations
	Durable Cache
	Buffer Pool
	Mapping table

	Atomic Writer
	Flush-Cache Command in Durable Cache
	Recovery Manager
	On power failure
	On reboot

	Performance Evaluation
	Workloads
	Experimental Setup
	Run-Time Performance
	MySQL for LinkBench
	Commercial DBMS for TPC-C
	Couchbase NoSQL

	Related Work
	Durability by Reliable Memory
	Reliability of SSDs
	Atomic Page Write
	Page Size Tuning

	Conclusion
	References

