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Abstract With the rapid growth in the amount of graph-structured Resource De-
scription Framework (RDF) data, SPARQL query processing has received sig-
nificant attention. The most important part of SPARQL query processing is its
method of subgraph pattern matching. For this, most RDF stores use relation-
based approaches, which can produce a vast number of redundant intermediate
results during query evaluation. In order to address this problem, we propose an
RDF Triple Filtering (R3F) method that exploits the graph-structural information of
RDF data. We design a path-based index called the RDF Path index (RP-index) to
efficiently provide filter data for the triple filtering. We also propose a relational
operator called the RDF Filter (RFLT) that can conduct the triple filtering with
little overhead compared to the original query processing. Through comprehensive
experiments on large-scale RDF datasets, we demonstrate that R3F can effectively
and efficiently reduce the number of redundant intermediate results and improve the
query performance.
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1 Introduction

The Resource Description Framework (RDF) [23] is the core data model for the
Semantic Web, and SPARQL [34] is the standard query language for RDF data.
Currently, RDF is widely used to represent and integrate data from various domains
in a flexible way. In general, RDF data can be modeled as a graph, and the evaluation
of SPARQL queries can be considered as subgraph pattern matching on the RDF
graph. Although its inherent graph structure gives a strong expressive power and
flexibility to RDF, it also poses significant challenges for the processing of large-scale
RDF data.

Most RDF systems employ a relational model. Examples of this are Jena [8],
Sesame [7], SW-Store [1], Virtuoso [11], and RDF-3X [31]. Although the physical
structures and detailed implementations are different for each RDF engine, they
share a common framework for processing RDF data. That is, the RDF graph is
stored in the form of relations (for example, relational tables in Jena and Sesame,
or clustered B+tree indices in RDF-3X). SPARQL queries are processed using
execution plans consisting of (1) operators for retrieving the matching triples, and
(2) operators for combining the retrieved triples (the specific plans are different, as
for different RDF engines, according to the physical storage layout and optimization
techniques). For example, RDF-3X uses scan operators to retrieve matching triples
and join operators to combine them. In this framework, each operator of the
execution plan generates partially matching subgraphs for the query graph as its
output. Let us consider the example of a SPARQL query and its execution plan in
RDF-3X, as shown in Figure 1 (in this figure, each join operator is annotated with
its join variable). Join1 joins triples retrieved from Scan1 and Scan2 for variable ?v3,
and outputs matched subgraphs for the subgraph pattern consisting of the two triple
patterns 〈?v2, p2, ?v3〉 and 〈?v5, p2, ?v3〉.

Although this style of SPARQL query processing is widely used, it can produce
a vast number of redundant intermediate results, especially when processing large-
scale RDF data. The redundant intermediate results are those obtained from op-
erators that are not included in the final results. In the previous example, not all

(a) Query Graph (b) Execution Plan

Figure 1 SPARQL query graph and execution plan
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subgraphs generated from Join1 contribute to the final results, because some of them
are removed by subsequent join operators, i.e., Join2 or Join3. These redundant
intermediate results waste processing resources without contributing to the query
results. Moreover, for large-scale RDF data, it is possible that the overhead due
to the redundant intermediate results dominates the overall query processing time.
The main cause of this problem is that each operator simply generates all subgraphs
matching its assigned subgraph pattern without considering any graph-structural
information available in the RDF data.

In this paper, we propose a novel filtering method called RDF Triple Filtering
(R3F) to address the problem of redundant intermediate results. R3F can reduce
these unwanted results by filtering out irrelevant triples retrieved from the scan
operators before they are passed to the join operators. We check the relevance of
triples for a particular query using incoming predicate path information. Consider,
for example, vertex ?v3 in Figure 1a, which has two path patterns: 〈p1, p2〉 and
〈p3, p2〉. These are called incoming predicate paths because they are composed of
and represented by a sequence of predicates. In this example, the result vertices
matching ?v3 must have these two incoming predicate paths. Using this necessary
condition, R3F can filter out irrelevant triples, and consequently reduce redundant
intermediate results.

In order to provide filter data for R3F, we design a new indexing structure called
the RDF Path index (RP-index). The RP-index stores the precomputed incoming
predicate path information in order to efficiently provide the filter data required for
triple filtering. It consists of several vertex lists built for a set of predicate paths, each
of which contain all vertices having the specified predicate path as their incoming
path. The RP-index is a sort of path-based index, and appears very similar to previous
path-based indices proposed for semi-structured data, such as DataGuide [13], 1-
index [27], A(k)-index [21], D(k)-index [35], and M(k)-index [18]. Although these
indices can be used for R3F, the RP-index has different goals, aiming to provide filter
data efficiently rather than obtain query results from the index. Thus, it is specially
designed to achieve this goal, and can also take different approaches to address
the size problem, which is an important issue in several path-based indices. More
specifically, we deal with the size problem of the RP-index using the discriminative
fragment concept applied in gIndex [48]. We discuss the differences between the RP-
index and other indices in more detail in Section 2.

We also propose a new relational operator called the RDF Filter (RFLT) that
conducts triple filtering for its child operators using vertex lists from the RP-index.
It is a very lightweight operator, designed to minimize the additional overhead to
the original query processing caused by triple filtering. Execution plans using RFLT
operators are generated by a cost-based query optimizer based on their costs and
filtering effects. For this, we also elaborate on the cost measure and estimation
method for the output cardinality of the RFLT operator.

We implement R3F on top of RDF-3X [31], the fastest RDF engine according
to the published numbers (we discuss RDF-3X in Section 2). Many RDF stores
including RDF-3X store triples as sorted to permit the efficient retrieval of matching
triples and to allow efficient merge join operations [1, 31, 46]. For efficient triple
filtering, R3F uses the manner in which retrieved triples are sorted in RDF-3X.
In addition, RDF-3X already has several indices for efficient retrieval of matching
triples. Whereas these indices aim to retrieve matching triples for a given triple
pattern, the RP-index is designed to supply the filter data. The RP-index is a sort of
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supplementary index for pruning irrelevant triples retrieved from the triple indices
(or aggregated indices) using the incoming predicate path information. Hence, the
RP-index and the indices in RDF-3X are in a complementary relationship. We focus
on the graph pattern matching component of SPARQL query processing, especially
the basic graph pattern [34]. However, we also discuss how to apply our approach to
other types of queries.

Our main contributions are summarized as follows:

– We propose a novel triple filtering method called R3F to reduce the amount of
redundant intermediate results using the incoming predicate path information of
RDF data.

– For efficient and effective triple filtering, we design a path-based index called
RP-index. Additionally, we deal with the size problem of the RP-index using
the discriminative and frequent fragment concept from gIndex [48], and also
consider maintenance issues.

– We propose the RDF Filter (RFLT) operator for conducting triple filtering, and
integrate this into the cost-based query optimizer.

– We implement R3F on RDF-3X [31] and present comprehensive performance
evaluation results using various large-scale RDF datasets.

This paper is an extended version of a previous paper [22]. In this research, we
extend the previous work as follows: (1) We extend the RP-index to include reverse
predicates, increasing the capability of triple filtering. (2) We deal with the size
problem and maintenance issues of the RP-index that were not dealt with in the
previous work. (3) We extend the RFLT operator to conduct triple filtering and
merge joins at the same time, and also propose its cost function.

The remainder of the paper is organized as follows. Section 2 reviews related
work. In this section, an overview of the target RDF-3X system is also presented.
Section 3 gives some preliminary notation and discusses the data model related to
our work. Section 4 describes the overall process of R3F and presents the design of
the RP-index. Section 5 introduces the RFLT operator and discusses the generation
of execution plans using this operator. Section 6 covers the building and incremental
update method of the RP-index. Section 7 presents some experimental results from
our approach, and Section 8 concludes the paper and discusses future work.

2 Related work

In this section, we review previous work on RDF stores, the handling of intermediate
results in SPARQL query processing, and path-based and graph indices.

2.1 RDF stores

We can divide RDF stores into two categories, relation-based RDF stores and
graph-based RDF stores, based on their query processing method. Relation-based
RDF stores use the logical relational model to store RDF data and translate
SPARQL queries into equivalent relational algebraic expressions [9]. On the other
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hand, graph-based RDF stores process SPARQL queries using subgraph matching
algorithms. They usually use graph indices to reduce the search space of subgraph
matching algorithms.

Early relation-based RDF stores such as Jena [8] and Sesame [7] use relational
databases as their underlying stores (currently, they also provide native RDF
stores [33]). However, because relational database management systems (RDBMSs)
are not optimized for processing RDF data, they have scalability problems for
large-scale RDF data. SW-Store [1] partitions the triple table vertically according
to the predicate value. By partitioning the triple table, SW-store can easily retrieve
matching triples for triple patterns with predicate constants. However, SW-Store is
not scalable for queries with predicate variables [39]. Hexastore [46] stores RDF
triples in a set of vectors. Triples are indexed by six possible orderings of three
columns so that they can be retrieved for any type of triple pattern. This method
can also extend the possibility of using merge joins. BitMat [2] stores RDF data
as a compressed bit-matrix structure. The authors present a pruning method using
bit-matrices that does not generate intermediate results. RDF-3X [31] is another
relation-based RDF store, that we discuss in more detail in Section 2.1.1. SWIM
(Semantic Web Information Management) [20] proposes the scalable and extensible
framework for RDF data that stores the semantic web data in a relational DBMS.
The approximate query answering problem for RDF data has also been studied and
experiments on relational RDF stores were conducted in [45].

Recently, a few graph-based RDF stores have also been proposed. In the GRIN
index [44], an RDF graph is partitioned into several subgraphs. Those relevant to a
query can then be chosen by the GRIN index. DOGMA [6] is a disk-based graph
index used to retrieve the neighboring vertices of a specific vertex. The DOGMA
index exploits distance information to restrict the search space. PIG [43] constructs
an index that summarizes the structure of an RDF graph, and processes queries using
the structure index. gStore [51] uses an approach similar to PIG. gStore reduces the
search space by transforming an RDF graph and query graphs into signature graphs,
and then matches the query signature graphs against the data signature graph.

In summary, relation-based RDF stores mainly use join operations, whereas
graph-based RDF stores use graph exploration for the graph pattern matching. Using
join operations, substructures can be joined in batch, and so relation-based RDF
stores are more suitable for handling large-scale RDF data [41]. However, the graph
indices used in graph-based RDF stores can effectively reduce the search space of
the graph pattern matching algorithms, and can be used to reduce the number of
redundant intermediate results. Our proposed R3F is designed for relation-based
RDF stores, and also uses a kind of graph index, the RP-index. Therefore, R3F
can be regarded as an attempt to hybridize the advantages of relation-based and
graph-based approaches. To the best of our knowledge, there has been little effort to
integrate the two approaches.

2.1.1 Overview of RDF-3X

RDF-3X [31] is an open source RDF engine and it is known as the fastest RDF engine
according to the published numbers. In RDF-3X, Uniform Resource Identifiers
(URIs) and literals are replaced by integer IDs using a mapping dictionary, and
triples are stored using these IDs. Therefore, URIs and literals are treated in the
same way in RDF-3X. RDF triples are stored in six clustered B+tree indices, built
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for each of the six permutations of subject (S), predicate (P), and object (O): SPO,
SOP, PSO, POS, OSP, and OPS. Each index stores triples in the leaf blocks as sorted
by its ordering. Additionally, there also exist nine aggregated indices (SP, PS, SO,
OS, PO, OP, S, P, O) that index partial triples and their occurrence counts.

By storing triples in six indices, RDF-3X can retrieve matching triples for any
triple pattern in any ordering using range scans. For example, if a scan operator
reads triples from the PSO index, the retrieved triples are ordered by (P, S, O).
Furthermore, if the triple pattern assigned to a scan operator has a predicate
constant, the retrieved triples are totally ordered by the S column.

RDF-3X uses two types of join operators: hash join and merge join. If both inputs
of a join operator are ordered by columns corresponding to the join variable, RDF-
3X uses the merge join; otherwise, the hash join is used. Let us consider the example
in Figure 1b. Scan1 and Scan2 use the POS index, and the retrieved triples are totally
ordered by the O column. The vertex corresponding to the O column is ?v3, which
is also the join variable of Join1. Therefore, Join1 uses the merge join. However, the
results of Join1 are ordered by v3 and the join variable of Join2 is ?v2. Thus, Join2

uses the hash join. Join3 also uses the hash join because the results of Join2 are not
ordered.

RDF-3X alleviates the space overhead caused by redundancy (six triple indices
and nine aggregated indices) by compressing the triples in the leaf blocks using a
delta-based byte-level compression scheme. This compression scheme exploits the
fact that it usually takes fewer bytes to encode the delta between triples than to
store the triples directly. The delta between two triples is encoded with a header
byte, which contains the size of three delta values, and three deltas between values in
the triples (subject, predicate, and object). The delta between two values consumes
between 0 bytes (unchanged) and 4 bytes (the ID of a URI or literal consumes
four bytes), and therefore there are 125 size combinations for the delta between
two triples. This delta size combination is stored in the header byte, with its most
significant bit set to 1. If only the last value of the triple changes and the delta is less
than 128, it is directly stored in the header byte (with its most significant bit set to 0),
and so it can be encoded with only one byte. For a more detailed description, readers
can refer to [31].

In addition, to reduce the overhead of index scans and the number of intermediate
results, RDF-3X uses a kind of sideways information passing (SIP) technique called
U-SIP. SIP refers to techniques that reduce the inputs of a join operator using
information passed from another operator outside the normal execution flow (this is
why they are called sideways information passing) [3, 4, 10]. The passed information
usually contains domain information about the join variable so that inputs that will
not be joined can be pruned in advance. U-SIP builds filters that provide information
about the next triples to be read (called next information). The next information is
the subject or object ID to be read next. RDF-3X uses this next information to skip
the reading of unnecessary disk blocks. While scanning the leaf blocks sequentially, if
the next block is considered to be unnecessary based on the next information, rather
than continuing the sequential scan, it looks up the B+tree index from the root node
and directly accesses the leaf blocks containing the next triples to be read. In this
way, U-SIP can avoid reading unnecessary leaf blocks and reduce the number of
redundant intermediate results.
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2.2 Handling the intermediate results

In a traditional RDBMS, the redundant intermediate result problem is dealt with
by finding the optimal join orderings for the queries [37]. Following this approach,
several selectivity estimation techniques for SPARQL query processing have also
been proposed [26, 40]. In RDF-3X, several specialized histograms for RDF are
used [30–32]. They provide cardinality information for specific triple patterns and
selectivities for specific patterns of joins.

The SIP techniques discussed in the previous section, including U-SIP, can also
be considered as techniques for handling the intermediate results. However, SIP
techniques are dynamic, runtime methods [3, 4, 10], whereas the join ordering
technique is a static method determined in the query compile time.

These two previous approaches for handling the intermediate results have the lim-
itation that they do not consider any graph structures in RDF data. Our R3F method
exploits the graph-structural information, and can therefore be more effective for
graph-structured RDF data than these approaches.

2.3 Path-based and graph indices

There exist numerous bodies of work in the literature proposing path-based indices
for semi-structured data, e.g., DataGuide [13], 1-index [27], A(k)-index [21], D(k)-
index [35], and M(k)-index [18] (cf. [14, 47] for detailed surveys). These indices sum-
marize path information in graph-structured data, and provide a concise summary
of the original graph that can be used for query processing in place of the original
graph. Therefore, these indices focus on reducing the index size for efficient query
processing, and avoid storing vertices several times in the index.

Although the RP-index can be considered reminiscent of these path-based indices,
it aims to provide the filter data efficiently, not to obtain query results from the
index. Hence, it incorporates a different structure than previous path-based indices:
vertices can be stored several times, and they are stored as sorted and compressed
to minimize the space and processing overheads of triple filtering. To prevent the
indices from growing larger than the original graph, the path-based indices except
DataGuide map a vertex to exactly one index node. Therefore, when using these
indices, union operations are required to obtain vertices which are reached by a given
path. In contrast, RP-index allows overlaps between vertex lists to be able to get filter
data directly. To address the size problem of DataGuide, 1-index partitions vertices
based on their B-bisimilarity. Intuitively, it stores vertices which have a same set of
incoming paths into a index node. And to reduce the size of index further, A(k)-index
indexes paths whose length are no longer than k using k-bisimilarity. D(k)-index and
M(k)-index propose methods to apply k values adaptively. However, the RP-index
applies a different approach to address the size problem. Because it provides filter
data, it does not need to index all existing paths, and can index only effective paths
for triple filtering selectively. Using this fact, we store only vertex lists having enough
filtering power, based on the discriminative and frequent fragment concept used in
gIndex [48]. Thus, the RP-index has a different structure from previous path-based
indices and takes a different approach to handling the size problem.
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Many graph indices have also been proposed for graph data. There are two
problem formulations for graph indexing: the graph-transaction setting (many small
graphs in a database) and the single-graph setting (a large single graph) [25]. The
single-graph setting is more general because several graphs can be combined into a
single graph, and the algorithms developed for the graph-transaction setting cannot
be used for the single-graph setting [25]. Most graph indices have been proposed for
the graph-transaction setting, and focus on reducing the number of tests conducted
on the graph isomorphism, which is a very costly operation (e.g., GraphGrep [38],
gIndex [48]). Hence, it is not trivial to apply these indices to an RDF graph, which
is a single large graph. Recently, graph indices for large graphs were also proposed,
such as SAGA [42], GraphQL [17], GADDI [49], and SPath [50]. Although these
indices can be used in graph-based RDF stores, it is not trivial to apply these indices
in relational-based RDF stores because they were designed in the context of graph-
traversing algorithms.

3 Preliminaries

3.1 RDF and SPARQL

In this section, we present the core fragments of RDF and SPARQL that are relevant
to our approach. We omit some features of RDF and SPARQL for simplicity. For
example, we do not consider some features of RDF, such as blank nodes and the
literal data type. For SPARQL, we focus on the basic graph patterns [34]. A basic
graph pattern is a set of conjunctive triple patterns, which means its results should
be matched to all triple patterns [34]. We assume that there is no join with predicate
variables, because this join type is rarely used. However, with minor modifications,
our approach can be applied to RDF data and SPARQL queries without these
restrictions (we will discuss this issue in Section 4.2).

We assume the existence of three pairwise disjoint sets: a set of URIs U , a set of
literals L, and a set of variables VAR. A variable symbol starts with ? to distinguish
it from a URI. A triple t(s, p, o) ∈ U × U × (U ∪ L) (without variables) is called an
RDF triple, and a triple tp(s, p, o) ∈ (U ∪ VAR) × U × (U ∪ L ∪ VAR) (triple with
variables) is called a triple pattern. We treat literals in the same way as URIs, as in
RDF-3X. That is, all URIs and literals are mapped to integer IDs using a dictionary
mapping, and URIs and literals are treated in the same way.

The RDF database D is a set of RDF triples, and SPARQL query Q is a set of
triple patterns. We denote the set of URIs that are used as predicates of triples in
D as PD. Formally, PD = {p | p ∈ U ∧ ∃t(s, p, o) ∈ D}. Additionally, we denote as
D(pi) the set of triples in D whose predicates are pi. Namely, D(pi) = {t(s, p, o) | t ∈
D ∧ p = pi}.

We map RDF database D into a graph GD = (VD, ED, LD), where VD is a set
of vertices corresponding to the subjects and objects of all triples in D, ED ⊆ VD ×
VD is a set of directed edges that connect the subject and object vertices for triples
in D, and LD : ED → PD is an edge-label mapping such that, for all t(s, p, o) ∈ D,
LD(s, o) = p. SPARQL query Q is also mapped into graph GQ = (VQ, EQ, LQ),
where VQ is a vertex set containing the subjects and objects of triple patterns in Q,
EQ is a set of directed edges that connect vertices corresponding to the subjects and
objects of triple patterns in Q, and LQ is an edge-label mapping such that, for all
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tp(s, p, o) ∈ Q, LQ(s, o) = p. Both GD and GQ are edge-labeled directed graphs.
Figures 1a and 2 show a SPARQL query graph and an RDF graph, respectively. In
these figures, we represent URIs and literals using simple notation such as vn, pn for
readability.

For SPARQL query Q, the substitution θ is a mapping VQ ∩ VAR → U . θ(GQ)

is a graph whose variables are substituted according to θ . The answer set for a
SPARQL query is defined as follows.

Definition 1 (SPARQL Query Answer) The answer set for SPARQL query Q w.r.t
RDF database D is Ans(Q) = {θ | θ(GQ), which is isomorphic to a subgraph to GD}.
For v ∈ VQ, Ans(Q, v) denotes the projection of Ans(Q) over v, Ans(Q, v) = {θ(v) |
θ ∈ Ans(Q)}, where θ(v) is the projection of mapping θ over v.

Example 1 (SPARQL Query Answer) For the RDF graph in Figure 2, the answer
set of the SPARQL query in Figure 1a is Ans(Q) = {(?v1 → v1, ?v2 → v2, ?v3 → v6,

?v4 → v7, ?v5 → v8), (?v1 → v8, ?v2 → v9, ?v3 → v12, ?v4 → v7, ?v5 → v8), (?v1 → v10,

?v2 → v11, ?v3 → v15, ?v4 → v13, ?v5 → v14), (?v1 → v11, ?v2 → v14, ?v3 → v15, ?v4 →
v13, ?v5 → v14)}. Furthermore, the projection over ?v3 of Ans(Q) is Ans(Q, ?v3) =
{v6, v12, v15}.

3.2 Incoming predicate path

We define an RDF-specific path, called a predicate path, as follows.

Definition 2 (Predicate Path) A predicate path is a sequence of predicates. Given
a predicate path ppath, the length of ppath, denoted as |ppath|, is the number of
predicates in ppath.

We also define a set of incoming predicate paths for a vertex as follows.

Definition 3 (Incoming Predicate Path) Given a graph G = (V, E, L), for v ∈ V,
an incoming predicate path for v is a predicate path consisting of the predicates
of the incoming path of v in G. We denote a set of incoming predicate paths of
v as InPPath(v). When the maximal path length maxL is given, a variant of the
notation, InPPath(v, maxL), is used to denote a subset of InPPath(v), such that
InPPath(v, maxL) = {ppath | ppath ∈ InPPath(v) ∧ |ppath| ≤ maxL}.

Note that the definition of the incoming predicate path can be applied to both
RDF and query graphs.

Figure 2 RDF graph

World Wide Web (2015) 18:317–357 325



Example 2 (Incoming Predicate Path) For the RDF graph in Figure 2, the incoming
path set of v12 with maximum length 3 is InPPath(v12, 3) = {〈p2〉, 〈p3〉, 〈p1, p2〉,
〈p3, p2〉, 〈p1, p3〉, 〈p2, p3, p2〉, 〈p3, p1, p2〉}. For the SPARQL query graph in
Figure 1a, InPPath(?v3, 3) = {〈p1, p2〉, 〈p3, p2〉}.

3.3 Candidate vertex set

For v ∈ VQ, the candidate vertex set for query vertex v is the set of vertices that could
be results for v. Essentially, the candidate vertex set for v is a superset of the answer
set Ans(Q, v). The candidate vertex set can be defined in various ways, as long as it
is a superset of the answer set. In this paper, we define the candidate vertex set using
the incoming predicate path as follows.

Definition 4 (Candidate Vertex Set) Given the RDF database D, SPARQL query
Q, and maximum length of the incoming predicate path maxL, the candidate
vertex set for v ∈ VQ is CInPPath(v, maxL) = {vg | vg ∈ VD ∧ InPPath(v, maxL) ⊆
InPPath(vg, maxL)}.

The following lemma ensures that the definition of CInPPath satisfies the previous
condition of the candidate vertex set (i.e., it should be a superset of the answer set).

Lemma 1 Given the RDF database D and SPARQL query Q, ∀v ∈ VQ, Ans(Q, v)

⊆ CInPPath(v, maxL).

Proof We prove that if vertex vD ∈ GD is in Ans(Q, v), vD must have all
incoming predicate paths of v. That is, ∀vD ∈ Ans(Q, v), InPPath(v, maxL) ⊆
InPPath(vD, maxL). If vD ∈ Ans(Q, v), there exists a substitution θ ∈ Ans(Q) that
ensures graph θ(GQ) is isomorphic to a subgraph to GD and θ(v) = vD. From
the definition of a subgraph isomorphism, if there exists an incoming path of
v, 〈e1, . . . , en〉 (n ≤ maxL) in GQ, there must exist a matching incoming path
of vD 〈e′

1, . . . , e′
n〉 in θ(GQ), such that ∀i, 0 ≤ i ≤ n, l(ei) = l(e′

i), where ei is an
edge and l(ei) is the label of ei. Therefore, ∀vD ∈ Ans(Q, v), InPPath(v, maxL) ⊆
InPPath(vD, maxL); that is, all vD ∈ Ans(Q, v) contain all incoming predicate paths
of v, and Ans(Q, v) ⊆ CInPPath(v, maxL). ��

Example 3 (Candidate Vertex Set) The candidate vertex for ?v3 in Figure 1a should
have two incoming predicate paths, 〈p1, p2〉 and 〈p3, p2〉. For the RDF graph
in Figure 2, there are three vertices that have these incoming predicate paths,
so CInPPath(?v3, 2) = {v6, v12, v15}. We can see that Ans(Q, ?v3) = {v6, v12, v15} ⊂
CInPPath(?v3, 2) (i.e., satisfying the condition for the candidate vertex set).

4 R3F and the RP-index

In this section, we present an overview of R3F and discuss the design of the RP-
index. We present a logical description of the RP-index in Section 4.2, and discuss its
physical implementation in Section 4.2.1.
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4.1 Overall process of R3F

Our goal is to filter out triples that are irrelevant to the query from among those
retrieved from the scan operators. To decide the relevance of a triple for a given
query, we use the definition of the candidate vertex set, CInPPath. Suppose that ?vS

and ?vO are the subject and the object, respectively, of a triple pattern in the query.
The triples retrieved for this triple pattern are checked to see if their subjects or
objects exist in CInPPath(?vS, maxL) or CInPPath(?vO, maxL), respectively. If either
condition is not true, this triple is irrelevant, and so it can be filtered out safely.

To implement this type of triple filtering, we design the RP-index and RFLT
operator. The RP-index is designed to provide CInPPath efficiently, and is presented
in Section 4.2. RFLT operators conduct triple filtering for their child scan operators.
In order to apply triple filtering, the query optimizer analyzes the query graph and
adds appropriate RFLT operators to the execution plan based on the filtering effects,
costs, and output cardinalities of the RFLT operators. We will discuss the RFLT
operator and the query optimization method in Section 5.

4.2 RP-index definition

The RP-index is an index structure used to obtain CInPPath(v, maxL) efficiently. It
consists of a set of vertex lists for predicate paths existing in the RDF database D.
The vertex list of predicate path ppath is defined as follows.

Definition 5 (Vertex List) Given the RDF database D, the vertex list for the
predicate path ppath is a set of vertices that have ppath as their incoming predicate
paths, i.e., Vlist(ppath) = {v ∈ VD | ppath ∈ InPPath(v)}.

The RP-index for D is defined as follows.

Definition 6 (RP-index) Given the RDF database D, the RP-index of D with
maximum length maxL, denoted by RP-index(D, maxL), is a set of pairs
〈ppath, Vlist(ppath)〉, where ppath is a predicate path in D whose length is less than
or equal to maxL.

Example 4 (RP-index) Figure 3 shows the Vlists in RP-index(D, 3) for D in Figure 2
with maxL = 3. There are 15 Vlists in RP-index(D, 3).

We introduce maxL to limit the size of the RP-index. As maxL increases, the
number of predicate paths in the RP-index increases and, as a result, the quality of
the triple filtering can be improved. However, the space overhead of the RP-index
also increases. In other words, there is a tradeoff between the quality of the triple
filtering and the space overhead of the RP-index. This tradeoff can be adjusted by
maxL (we also use another method to address the size problem of the RP-index,
discussed in Section 4.3).

A Vlist can be used to obtain candidate vertex sets. Given RP-index(D, maxL)

and query Q, we can obtain CInPPath(v, maxL) for v ∈ VQ by computing the intersec-
tion of Vlist(ppath) for all ppath ∈ InPPath(v, maxL).
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Figure 3 Vlists in
RP-index(D, 3)

4.2.1 Physical structure of the RP-index

The vertices in a Vlist are represented by their integer IDs (4 bytes), which are
produced by the dictionary mapping used in RDF-3X (Section 3). Vlists are sorted
and stored on disk by vertex IDs, enabling the Vlist to be read from disk in its sorted
form. The reason to store Vlists as sorted is to obtain CInPPath by simply merging the
relevant Vlists (recall that CInPPath can be obtained by the intersection of the Vlists).
Another benefit of sorting is that sorted Vlists can be compressed by the delta-based
byte-level compression scheme, similar to the compressed triples in RDF-3X [31]
(see Section 2.1.1). The delta between two vertex IDs is encoded with 1 header byte
and the minimum number of bytes for the delta (1–4 bytes). If the delta is smaller
than 128, it is directly stored in the header byte, consuming only one byte. Otherwise,
the header byte stores the byte length of the delta with its most significant bit set to 1

Figure 4 A trie for predicate paths
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to indicate the delta is not small. This compression scheme alleviates the overall size
overhead of Vlists and reduces the disk I/O overhead in reading the Vlists.

We organize the predicate paths of the RP-index in a trie (or prefix tree) data
structure. Each node in level l in the trie has a pointer to the Vlist for its associated
length-l predicate path. Figure 4 shows the trie for RP-index(D, 3) in Figure 3. The
trie provides compact storage for the predicate paths, because duplicated parts of
predicate paths can be shared. In addition, it provides an efficient way to access
the Vlist for a given predicate path. We can find the disk location of the Vlist for
a predicate path by traversing the trie using the predicate path. The number of nodes
in the trie is equal to the number of predicate paths in the RP-index. For real-life
data sets and a small maxL value, the trie is of relatively small size and can reside in
the main memory.

4.3 Discriminative and frequent predicate paths

Due to their exponential number, it would be infeasible to generate Vlists for all
predicate paths in an RDF database, even if we restricted their maximum length.
Hence, we should choose a subset of Vlists to be stored in the RP-index. To establish
criteria for choosing Vlists, we define the discriminative and frequent predicate
path, which is adapted from the discriminative and frequent fragment concept in
gIndex [48].

The first criterion is to store only Vlists with enough filtering power. If Vlisti ⊃
Vlist j, we can use Vlisti in place of Vlist j, because Vlisti has all of the vertices in
Vlist j. Therefore, we can store only Vlisti and remove Vlist j from the RP-index.
However, this replacement can degrade the filtering power, because the replacement
filter is prone to produce more false positives than the replaced filter. Therefore, it
is important to choose predicate paths that do not significantly degrade the filtering
power. A discriminative predicate path is one whose Vlist cannot be replaced by
another Vlist without degenerating the filtering power to an unacceptable degree.
We define the discriminative predicate path as follows.

Definition 7 (Discriminative Predicate Path) Given a discriminative ratio γ (0 <

γ ≤ 1), predicate path ppath is discriminative iff, ∀ppathsuf that are proper suffixes of
ppath, |Vlist(ppath)| < γ × |Vlist(ppathsuf)|.

In other words, predicate path ppath is discriminative if Vlist(ppath) is smaller
(according to γ ) than the Vlist for the longest proper suffix predicate path of ppath.
Note that if |ppath| = 1, ppath is discriminative because it does not have any proper
suffix predicate path.

Example 5 (Discriminative Predicate Path) For the RP-index in Figure 3, suppose
that the discriminative ratio is γ = 0.7. Then, 〈p1, p2〉 is not discriminative because
|Vlist(〈p1, p2〉)| = 5, |Vlist(〈p2〉)| = 6, and |Vlist(〈p1, p2〉)|/ |Vlist(〈p2〉)| > 0.7.

The second criterion is to store only frequent predicate paths. A predicate path
is frequent iff its Vlist has more vertices than the minimum threshold defined by
the user. Infrequent predicate paths are not likely to be useful, because they are
rare in RDF graphs and would not be queried frequently. Therefore, removing them
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does not degrade the overall performance for most queries. Additionally, because
there are a large number of infrequent predicate paths, removing them can reduce
the size of the RP-index significantly. Since the number of paths increases with path
length, we use a size-increasing function to provide the threshold value for identifying
frequent predicate paths. In this way, we can reduce the overall index size. We define
a frequent predicate path as follows.

Definition 8 (Frequent Predicate Path) Given a size-increasing function ψ(l), predi-
cate path ppath is frequent if and only if |Vlist(ppath)| ≥ ψ(|ppath|).

4.4 Reverse predicate

Because R3F utilizes the incoming predicate path information, triple filtering cannot
be applied to a vertex having no incoming predicate path. For example, vertex ?v3 in
Figure 5 has no incoming predicate path, and so triple filtering cannot be applied to
?v3, even though it has four edges (ignoring the dashed edges). In order to increase
the capability of triple filtering, we extend an RDF database and SPARQL query as
follows to consider the reverse predicates.

Definition 9 (Extended RDF Database and Query) For RDF database D,
∀t(s, p, o) ∈ D, we assume the existence of a virtual triple t′(o, pR, s). For SPARQL
query Q, ∀t(s, p, o) ∈ Q ∧ p ∈ PD, we assume the existence of a virtual triple
t′(o, pR, s). We call pR the reverse predicate of p.

In order to use reverse predicates, we build the RP-index on the extended RDF
database and generate the incoming predicate paths using the extended SPARQL
query. Note that the virtual triples do not need to exist in the RDF store. Instead, we
only suppose that they exist in the RDF store by reversing the subject and the object
of a triple when building the RP-index.

Although the introduction of reverse predicates can increase the applicabil-
ity of triple filtering, it can also result in many redundant predicate paths.
We call a predicate path redundant if its Vlist is always the same as some
Vlists of its suffix predicate paths. For example, Vlist(〈p1, p2, p3〉) is always the
same as Vlist(〈pR

1 , p1, p2, p3〉). This is because they have a suffix relationship

Figure 5 Extended SPARQL
query
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(Vlist(〈pR
1 , p1, p2, p3〉) ⊂ Vlist(〈p1, p2, p3〉)), and vertices that have 〈p1, p2, p3〉 as

their incoming predicate paths must also have 〈pR
1 , p1, p2, p3〉 as their incoming pred-

icate paths (i.e., Vlist(〈pR
1 , p1, p2, p3〉) ⊃ Vlist(〈p1, p2, p3〉)). In general, Vlist(ppath)

is the same as the Vlists for predicate paths having ppath as their suffix, and their
remaining parts are cyclic paths using the reverse predicates, as in the previous
example (we omit a formal definition and proof for simplicity). These redundant
predicate paths are due to the cycles caused by reverse predicates

Besides the redundant predicate paths, reverse predicates also cause too many
non-redundant incoming predicate paths. For example, ?v8 in Figure 5 has incoming
predicate path 〈p3, p2〉. Also, 〈p3, p2, pR

2 , p2〉 and 〈p3, p2, pR
2 , p2, · · · , pR

2 , p2〉 are
incoming predicate paths of ?v8 (note that these predicate paths are not redundant,
because they do not have 〈p3, p2〉 as their suffix). Although they are not redundant
and may be helpful, these incoming predicate paths are not likely to be used in
normal queries. As a result, in order to prevent the formation of redundant predicate
paths and the generation of too many incoming predicate paths, we do not generate
predicate paths containing the pattern pi, pR

i .
In Figure 5 the dashed edges denote those with reverse predicates. Considering

the reverse predicates, InPPath(?v3) = {〈pR
2 〉, 〈pR

1 , pR
2 〉, 〈pR

1 〉, 〈pR
3 〉, 〈pR

2 , pR
3 〉}.

4.5 Handling other types of queries

We have considered queries consisting of only the basic graph patterns without
predicate variables (see Section 3). As already mentioned, R3F can also be applied
to other types of queries with minor modifications. Queries with predicate variables
can be handled as follows. The first and easiest way is to simply exclude edges
with predicate variables from considerations when making the incoming predicate
paths for the triple filtering. That is, we do not generate the incoming predicate
paths with predicate variables. Let us consider the SPARQL query in Figure 6.
This query has one edge with a predicate variable ?p. If we exclude this edge when

Figure 6 A SPARQL query
with a predicate variable
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generating the incoming predicate paths, then InPPath(?v3) = {〈p3, p2〉, 〈p2〉}. Note
that because we exclude the predicate variable, we have fewer incoming predicate
paths. As we can see from this example, the first approach is simple, but it can also
limit the capability of triple filtering. The second way is to consider the variable
predicate as a special predicate, say pv , whose triples are the entire set of triples
in the database. Hence, when building the RP-index, the predicate paths containing
this variable predicate also need to be indexed. When generating incoming predicate
paths for the query graph, the triple patterns with predicate variables are considered
as edges with the label pv . For example, if we use the edge with the predicate variable,
then InPPath(?v3) = {〈p1, pv〉, 〈pv〉, 〈p3, p2〉, 〈p2〉}. The set Vlist(〈p1, pv〉) is a set of
vertices that have 2-length incoming predicate paths and where the predicate of the
first edge of the path is p1.

Queries with optional or union patterns can also be handled in a similar way.
We can apply R3F to these queries by generating incoming predicate paths for the
fragments of query graphs that consist of only the basic graph patterns. We can then
apply triple filtering to these queries.

4.6 Determining the RP-index parameters

Until now, we have only discussed the design of the RP-index. In this section, we
discuss its tuning issues. The RP-index has three tuning parameters: the maximum
path length maxL, the discriminative ratio γ , and the minimum frequency function
ψ(l). These parameters affect the size and performance of the RP-index. It is
important to make the RP-index as small as possible while maintaining its filtering
power. The size of the RP-index is highly dependent on maxL, as the number of path
patterns grows exponentially with the pattern length. However, for most cases, a
small maxL is sufficient because long paths are not common in real-world SPARQL
queries. We study the effects of maxL empirically in Section 7. From our experience,
maxL = 3 is sufficient in most cases.

Although we use small maxL, it is still possible for the RP-index to grow pro-
hibitively large. This is particularly likely to occur when there are a large number of
predicates as in the case of the DBSPB dataset used in the experiments in Section 7.
In this case, the number of possible predicate paths becomes abundant even for small
maxL, because of the large number of predicates. In addition, there might be some
cases in which queries with long paths are used and we need to index long path
patterns by using large maxL. However, the size problem of the RP-index with large
maxL can be controlled by adjusting γ and ψ(l). The effects of these two parameters
have already been discussed, in Section 4.3. They can reduce the size of the RP-
index; however, they can also degrade its performance by removing some necessary
predicate paths. Hence, these parameters should be tuned carefully by considering
the size and performance of the RP-index.

When the RP-index does not have some necessary predicate paths that users can
identify, it is possible to add such paths to the RP-index based on user decisions.
That is, rather than adjusting the parameters, users can indicate some necessary
predicate paths to be indexed. However, this requires previous knowledge of the
query workload. In most cases, using γ and ψ(l), the size of the RP-index can be
effectively controlled while retaining its filtering power. We see the effects of the
parameters in the experimental results (Section 7.2.2).
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5 Processing triple filtering

In this section, we describe how the triple filtering is processed. First, we introduce
the RFLT operator, and then explain how to generate an execution plan using RFLT
operators.

5.1 RFLT operator

The RFLT operator is a relational operator that conducts triple filtering for its child
scan operators. It exploits the sorted property of the retrieved triples to efficiently
process the triple filtering. Recall that the output triples of a scan operator in RDF-
3X are sorted by the S or O column, depending on which index the scan operator
reads. We define the sortkey for an operator as follows.

Definition 10 (Sortkey) The sortkey column of an operator is defined as the column
by which the results of the operator are sorted. We use the term sortkey vertex to
indicate the vertex in a query graph corresponding to the sortkey column. We also
use OP.sortkey interchangeably to denote the sortkey column or the sortkey vertex
of operator OP, depending on the context.

Example 6 (Sortkey) Scan1 in Figure 1b uses the POS index and its triple pattern
has the predicate constant p2. Therefore, the result of Scan1 is totally ordered by
the O column. The sortkey column and the sortkey vertex of Scan1 is the O column
and ?v3, respectively. In the same way, Scan2.sortkey =?v3, Scan3.sortkey =?v2, and
Scan4.sortkey =?v5.

Basically, the RFLT operator conducts triple filtering for its child scan operator
using their sortkey vertices. The query optimizer indicates to the RFLT operator
which predicate paths it should use for triple filtering as follows. The RFLT operator
for Scani is assigned only predicate paths in InPPath(Scani.sortkey, maxL), i.e., the
incoming predicate paths of the sortkey vertex of Scani. The RFLT operator will
compute the intersection of Vlists for all assigned predicate paths (this will be a
superset of CInPPath(Scani.sortkey, maxL)) to obtain the filter data for triple filtering.
The input triples are then checked to determine whether the values of the sortkey
column are included in the intersection (i.e., the filter data). This triple filtering can
be processed by simply merging the assigned Vlists and the input triples, because
they are all sorted by the sortkey column.

An RFLT operator can perform triple filtering for multiple scan operators as long
as their sortkey vertices are the same. Note that the filter data for scan operators with
the same sortkey vertex is also the same, because they will be assigned the same set
of Vlists. Thus, if we make several RFLT operators for these scan operators, which
conduct triple filtering separately using the same filter data, this causes redundant
processing of triple filtering. To avoid this, we design the RFLT operator to process
several child scan operators. Additionally, because the child scan operators share
the sortkey vertex, their output triples should be joined for their sortkey columns,
which can be also processed by the merge join because the input triples are all sorted.
Hence, we design the RFLT operator to process merge join operations and triple
filtering at the same time.
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Figure 7 Execution plan using
RFLT

Figure 7 shows part of the execution plan using RFLT operators for the query
in Figure 1a. The predicate path set (PPS) in the RFLT operator is assigned by the
query optimizer. In the plan on the left, there are two RFLT operators with the same
PPS and one merge join operator. The sortkey vertices of Scan1 and Scan2, and the
join variable of the merge join operator, are all ?v3. Therefore, these three operators
can be combined into one RFLT operator, as in the plan on the right.

Figure 8 illustrates the filtering process of the RFLT operator. The intersection of
two Vlists forms CInPPath(?v3, maxL), and this is used as the filter data. The outputs
of Scan1 and Scan2 are filtered using these Vlists, and the filtered triples are also
joined by the operator.

RFLT only performs the merge process for its inputs (Vlists and input triples).
Therefore, its cost is linear with respect to its input size, as follows.

I/O cost: O

⎛
⎝ ∑

p∈PPS

‖Vlist(p)‖
⎞
⎠ (1)

CPU cost: O

⎛
⎝ ∑

scan∈ChildOP

|scan| +
∑

p∈PPS

|Vlist(p)|
⎞
⎠ (2)

Figure 8 RFLT operator
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where ‖vlist‖ is the number of blocks of vlist, PPS is a set of predicate paths assigned
for the RFLT operator, ChildOP is a set of child scan operators, and |scan| is the
cardinality of the scan operator. The Vlists are usually much smaller than the input
triples. Therefore, the triple filtering process incurs little overhead, and the RFLT
operator is very efficient and lightweight. In Section 7.2.1, we compare the size of
Vlist and the input triples.

5.1.1 Implementation of the RFLT operator

We have implemented our RFLT operator in RDF-3X. RDF-3X adapts the iterator
model of the query execution [15], and the operators in RDF-3X have a common
interface with the first and next functions. first initializes the operator and returns
the first tuple, and next returns the next tuples. RFLT operator also has been
implemented as an iterator like other operators in RDF-3X so that it can be
integrated with its query plans. When the first function of the RFLT operator is
called, it performs some initializations for the triple filtering and returns the first
tuple which passes the triple filtering. And then it returns the resulting tuples when
its next function is called.

The results of the RFLT operator are the joined results of child input operators
that pass the triple filtering. In order to conduct triple filtering, the RFLT operator
reads Vlists from disk and gets the input triples from child operators by calling
their next function. It generates results by performing the N-way merge joins for the
assigned Vlists and input triples of the child operators, as discussed in the previous
section. Note that the RFLT operator could generate the results and conduct the
triple filtering simultaneously by performing only the N-way merge joins.

5.1.2 RFLT operator and U-SIP

RDF-3X exploits a type of SIP technique called U-SIP (see Section 2.1.1). In U-
SIP, a scan operator can skip the reading of irrelevant blocks by utilizing the next
information provided by other scan operators. With R3F, the filter data CInPPath can
be used as another source for the U-SIP next information.

Let us look at the example in Figure 9. This figure illustrates the POS index for
Scan1 to read, and the filter data of the RFLT operator CInPPath(?v3, maxL). The
POS index is a clustered B+tree index in which triples are stored in its leaf blocks
as sorted by the POS ordering. In this figure, the boxes represent leaf blocks of the
index, and we represent the interval of the object values of the triples stored in each
block. In this example, from CInPPath(?v3, maxL), the scan operator scanning the POS
index can determine that there is no need to read blocks whose objects are between
v7 and v11, because the triples whose objects are in the interval would be filtered
out in the RFLT operator. Therefore, it can skip two blocks whose objects are less
than v12 by performing the look-up operation for the index. In this manner, R3F can
provide the next information for scan operators. Consequently, R3F and U-SIP can
utilize synergy effects.

5.2 Generating an execution plan with RFLT operators

Many RDF stores, including RDF-3X, use a cost-based query optimizer to find
optimal (or near-optimal) plans for SPARQL queries [31]. In order to make a query
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Figure 9 RFLT operator and U-SIP

optimizer that considers triple filtering, we need to provide the query optimizer with
(1) the cost function of the RFLT operator, which was given in the previous section,
and (2) the estimated cardinalities of the RFLT operators. In this section, we extend
the query compiler of RDF-3X to consider RFLT operators. We first discuss the
estimation method for the output cardinalities of RFLT operators, and then consider
how to extend the query compiler to generate a plan using RFLT operators.

To begin, we assume that the following statistics are available: (1) the cardinalities
of scan operators (the number of triples matching to triple patterns), (2) the number
of distinct values of the sortkey column, and (3) the number of vertices in a Vlist.
These statistics are already available from indices in RDF-3X and the RP-index. In
addition, we form another statistic similar to the characteristics set [30]. We define
the characteristics set for v ∈ GD, SC(v), as the set of incoming predicates of v,
including reverse predicates. Formally, SC(v) = {p | ∃s : t(s, p, v) ∈ D}. For example,
for v14 in Figure 2, SC(v14) = {p1, p3, pR

2 }. The number of vertices which have the
characteristics set S is called the occurrence count [30] and is denoted as count(S).
We store the occurrence counts of all characteristics sets in D. The size of this
information is minuscule compared to the database size [30].

5.2.1 Filtering ef fect of Vlists

We define the filtering effect of Vlist V for Scani, E(Scani, V), as the fraction of the
remaining values of the sortkey column after filtering. Let us denote the sortkey
column of Scani and the set of its distinct values as K, interchangeably. Then,
E(Scani, V) can be represented as follows:

E(Scani, V) = |V ∩ K|/|K|. (3)

We can estimate this value using the statistics of Vlists. First, we can obtain |K| as
follows. Let us assume that the predicate of the triple pattern of Scani is p. If the
sortkey of Scani is the O column, |K| = Vlist(〈p〉), and if the sortkey of Scani is the
S column, |K| = Vlist(〈pR〉). To simplify the notation, we use pscan, which is defined
depending on the sortkey column S as follows: if K is the O column, pscan = p; if K
is the S column, pscan = pR. Then, we can represent |K| = |Vlist(〈pscan〉)|.
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The numerator of (3) can also be estimated using Vlists. Figure 10 shows the
relationship between V and K. We denote the last predicate of the predicate path
of V as pv . If pv = pscan, |V ∩ K| can be easily computed as |V| because 〈pscan〉 is the
suffix of the predicate path of V, and therefore V ⊆ K.

Otherwise (pv �= pscan), we should estimate the intersection in other ways because
V �⊆ K. The filtering effect of V against Vlist(〈pv〉) can be computed as
|V|/|Vlist(〈pv〉)| (i.e. V would filter the values in Vlist(〈pv〉) as the ratio of
|V|/|Vlist(〈pv〉)|). We can also assume that V filters the values in Vlist(〈pv〉)∩
Vlist(〈pscan〉) with the same filtering effect, because it is contained in Vlist(〈pv〉).
Then, we can estimate that |V ∩ K|=|V|/|Vlist(〈pv〉)|×|Vlist(〈pv〉)∩Vlist(〈pscan〉)|.
|Vlist(〈pv〉) ∩ Vlist(〈pscan〉)| is the number of vertices which have both pv and pscan

as their incoming predicates, and it can be obtained from the characteristics set,
count({pv, pscan}).

5.2.2 Cardinality of the RFLT operator

If an RFLT operator has one child operator, it conducts only triple filtering. Let
us denote the intersection of all assigned Vlists for an RFLT operator as C =⋂

ppath∈PPS Vlist(ppath). In this case, if we assume that the values of the sortkey
column of the child scan operator are distributed uniformly, the cardinality of the
RFLT operator can be estimated as follows.

|RFLT| = |Scani| × |C ∩ K|/|K| (4)

where K is the set of values of the sortkey column of Scani. To compute this
value, we should be able to estimate the set of intersections, C ∩ K. Although
there are a few techniques [24] for estimating this set, they require some additional
operations, such as sampling. In this case, we take a rather simple approach by
using the upper bound of |RFLT| as the estimated value. This means that we
conservatively underestimate the effect of triple filtering. The upper bound can be
estimated as |C ∩ K| ≤ min

(
minpath∈PPS |Vlist(ppath)|, |K|), and we use this value for

the estimated output cardinality of an RFLT operator.
If an RFLT operator has multiple child operators, we should be able to estimate

the join size for the filtered triples. If we can estimate the number of joined values of

(a) (b)

Figure 10 Filtering effect
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the filtered triples, and assume that the values are distributed uniformly, the output
cardinality can be estimated as follows:

|RFLT| = |J| ×
∏

Scani∈ChildOP

|Scani|/|Ki| (5)

where J is the set of joined values, and Ki is the set of sortkey column values of Scani.

J can be represented as J =
(⋂

p∈Ps
Vlist(〈p〉)

)⋂(⋂
ppath∈PPS Vlist(ppath)

)
,

where Ps is a set of predicates of the child scan operators. Here, we again take
the upper bound of |J|. We can easily obtain | ⋂p∈Ps

Vlist(〈p〉)| from the char-
acteristics set U1 = count(Ps). Also, we define U2 = minppath∈PPS |Vlist(p)|. Then,
|J| ≤ min(U1, U2).

In brief, we estimate the output cardinality of an RFLT operator using (1) the
assumption of a uniform distribution for the values of the sortkey column and (2)
the estimation of the sortkey column values remaining after triple filtering (the
intersection size of the values of the sortkey column and Vlists). We find the accuracy
of our estimation in Section 7.2.3.

Our method is very similar to the Characteristic Set [30], which was proposed to
estimate the cardinalities of star-join queries. However, our method does not aim
to replace the Characteristic Set, but to reflect the filtering effect in the cardinality
estimation. We expect that exploiting the Characteristic Set with our estimation
method would improve the estimation accuracy. Therefore, our method and the
Characteristic Set have a complementary relationship.

5.2.3 Generating an execution plan

The query optimization of RDF-3X is based on the bottom-up dynamic-
programming (DP) framework [31]. There are two ways to make plans using RFLT
operators. The first is to add RFLT operators to plans generated from normal query
optimization. This method is simple, but has the limitation that the plan cannot
reflect the changed cardinalities due to triple filtering. Hence, we integrate RFLT
operators into DP operator placement.

Before we discuss the addition method of RFLT operators, we briefly present the
DP query optimization framework, shown in Algorithm 1. The input of the algorithm
is a SPARQL query Q having n triple patterns (tp0 · · · tpn−1), and it returns the
cheapest plan for Q (line 19). The query compiler maintains the DP table (denoted as
dpTable in Algorithm 1), in which the optimal plans for the subproblems of the query
are stored. At first, the optimizer seeds its DP table with scan operators for the triple
patterns as solutions of the 1-size subproblems (lines 1–3). The buildScan function
makes scan operators for the input triple patterns. Larger plans are then created by
joining two plans from smaller problems (lines 10–15), and these are added to the
entries in dpTable. The buildJoin function makes join operators for two input plans.
The added plans are maintained as follows. Each entry in dpTable keeps only the
cheapest plans for its subproblem. However, there can be multiple plans in an entry
of the DP table if there are several plans with different interesting orders (the order
of output tuples). Basically, a plan in an entry is dominated and replaced by cheaper
plans. However, more expensive plans with different interesting orders can be used
to make final plans with lower overall costs. Hence, plans with different interesting
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Algorithm 1 Dynamic-Programming based Query Optimization
procedure DPsize (Q = {tp0, . . . , tpn−1})

1: for each tpi ∈ Q do
2: dpTable[{tpi}]=buildScan(tpi);
3: end for
4: for 1 ≤ i ≤ n do
5: for 1 ≤ j < i do
6: for each S1 ⊂ Q : |S1| = i − j, S2 ⊂ Q : |S2| = j do
7: if S1 ∩ S2 �= ∅ or

S1 and S2 cannot be joined then
8: continue;
9: end if

10: for each p1 ∈ dpTable[S1] do
11: for each p2 ∈ dpTable[S2] do
12: P ← buildJoin(p1, p2);
13: addPlan(dpTable[S1 ∪ S2], P);
14: end for
15: end for
16: end for
17: end for
18: end for
19: return dpTable[Q]

orders do not dominate each other and are kept in dpTable. The addPlan function
(line 13) maintains the plans in an entry of dpTable.

We modify buildScan and buildJoin, and add a buildRFLT function, which is
presented in Algorithm 2, to add RFLT operators. First, for each scan operator
created in the seeding phase, an RFLT operator is added as its parent operator
(line 3). When adding an RFLT operator in buildRFLT, the query optimizer finds the
incoming predicate paths for the sortkey vertex of the scan operator by traversing
the query graph and choosing only Vlists that are more effective than the user-
defined threshold in getEffectivePPath function. We refer to Vlists that are expected
to filter inputs more than a user-defined ratio as effective Vlists. The effect of Vlists is
estimated from (3). By only using effective Vlists, we can avoid the overhead incurred
by Vlists with an insignificant pruning effect. From our experience, a threshold value
of about 0.7 is adequate.

Next, after making the join operator for two smaller problems, if the join is a
merge join, the operator is converted into an RFLT operator and the child operators
of the join operator become the child operator of one RFLT operator (line 10)
(recall the merge process in Figure 7). Furthermore, the intersection of the PPSs
of the merged RFLT operators becomes the PPS of the new RFLT operator (line
11). We take the intersection in order to use only Vlists that are effective for all scan
operators.

This extension of the query optimizer to incoporate RFLT operators does not
incur much additional computation. It requires the traversing of the query graph,
which is small-sized (in getEffectivePPath function), and accessing the statistical
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Algorithm 2 Operator Build Functions
procedure buildScan (tp)

1: P ← a set of all possible scan operators for tp
2: for ∀p ∈ P do
3: p ← buildRFLT(p)
4: end for
5: return P

procedure buildJoin (p1, p2)
1: P ← a set of all possible join plans for p1 and p2
2: for ∀p ∈ P do
3: p ← buildRFLT(p)
4: end for
5: return P

procedure buildRFLT (p)
1: op ← the root operator of p
2: if op is scan operator then
3: v ← the sortkey vertex of op;
4: rootOp.ChildOP ← {op};
5: rootOp.PPS ← getEffectivePPath(InPPath(v, maxL), scan.predicate);
6: rootOp.Cost ← getCost(rootOp);
7: return rootOp
8: else if op is merge join operator then
9: v ← the sortkey vertex of op;

10: rootOp.ChildOP ← ⋃
c∈p.ChildOP c.ChildOP;

11: rootOp.PPS ← ⋂
c∈p.ChildOP c.PPS;

12: rootOp.Cost ← getCost(rootOp);
13: return rootOp
14: end if

information for estimating the output cardinalities which is resident in memory (in
getCost function).

6 Maintaining the RP-index

In this section, we present the method of building the RP-index and discuss a
technique for its incremental update.

6.1 RP-index building

Building the RP-index creates Vlists for predicate paths whose length is up to maxL
in the RDF database. A Vlist for a predicate path can be built using the path-pattern
query corresponding to the predicate path. That is, we can build Vlist(〈p1, p2〉) by a
query joining D(p1) and D(p2) (D(p) is a relation containing triples in the RDF
database D whose predicates are p). However, if we build each Vlist separately
using its corresponding query, many computations would be performed in duplicate.
For example, to build Vlist(〈p1, p2, p3〉), we have to join D(p1) and D(p2) again,
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which was computed during the building of Vlist(〈p1, p2〉). To reduce these duplicate
computations, we build a Vlist for an i-length predicate path (i > 1) using the Vlist
for the (i − 1)-length predicate path (its longest proper prefix) as follows:

Vlist(ppath) = ρI D

(
πO

(
Vlist(ppathpre) �I D=S D(p)

))
(6)

where ppathpre is the longest proper prefix of ppath and p is the last predicate of
ppath. In this equation, we view a Vlist as a relation with an ID column and D(p) as
a relation with S, P, and O columns. We build Vlists in a breadth-first fashion (that
is, from 1-length Vlists to maxL-length Vlists) and reuse Vlists built in the previous
step. In this way, we can reduce the number of duplicate computations.

There are some implementation issues related to the discriminative and frequent
predicate paths. As discussed in Section 4.3, we only store Vlists for discriminative
and frequent predicate paths in an attempt to address the size problem of the RP-
index. Due to this, there are some cases where it is impossible to build Vlists using
(6). For example, if Vlist(〈p1, p2〉) is infrequent, then we cannot use (6) to build
Vlist(〈p1, p2, p3〉) because Vlist(〈p1, p2〉) is not stored in the RP-index. In this case,
we build Vlist(〈p1, p2, p3〉) from scratch.

We can skip the building of some infrequent Vlists using their suffix predicate
paths. The sizes of Vlists have the following relationship:

|Vlist(ppath)| ≤ |Vlist(ppathsuf)| (7)

where ppathsuf is the proper suffix of ppath. That is, |Vlist(ppathsuf)| is the upper
bound of |Vlist(ppath)|. Therefore, if |Vlist(ppathsuf)| is less than the frequency
threshold ψ(|ppath|), we do not need to create Vlist(ppath).

Algorithm 3 outlines the process of building the RP-index. BuildRPindex gener-
ates the predicate paths in the BFS manner using a queue structure PQ (line 9–
11, 23–25). A size-l predicate path is generated by appending a predicate to a size-
(l − 1) predicate path in PQ. For each generated predicate path ppath, the pruning
condition (7) is checked (line 12) and, if satisfied, ppath is skipped. Otherwise,
Vlist(ppath) is created by calling CreateVlist(ppath) (line 18) (for building, isUpdate
is false). CreateVlist(ppath) builds a Vlist for ppath using the Vlist of the longest
proper prefix of ppath as described in (6). If Vlist(ppath) is not empty, the algorithm
checks whether ppath is discriminative and frequent, and if this condition is satisfied,
it is stored in the RP-index (lines 20–28).

6.2 Incremental maintenance of the RP-index

In order to ensure the correctness of query results, the RP-index should be consistent
with the RDF database and updated concurrently. The easiest way to obtain the
newest version of the RP-index is to rebuild it using the updated RDF store.
However, it would be very inefficient to rebuild the entire RP-index for every update.
In this section, we discuss the incremental maintenance of the RP-index.

We assume that RDF applications have read-mostly workloads in which the
updates for RDF stores are usually batched [31]. A batch update is modeled as a set
of updated triples U , whose triples are flagged as ‘inserted’ or ‘deleted.’ U is divided
into two subsets, a set of inserted triples U+ and a set of deleted triples U−.

Basically, given a set of updated triples U , all Vlists for the predicate paths
containing p ∈ PU (the set of predicates in U) should be updated. As we can see
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Algorithm 3 RP-index Build
procedure BuildRPindex (isUpdate, D, maxL)

1: /* We share the building algorithm for updating */
2: /* When building, isUpdate is false*/
3: /* D: RDF database */
4: /* maxL: the maximum length of the predicate path */
5: /* PD: the set of all predicate in D */
6: /* PQ: a queue of predicate paths */
7: enqueue(〈〉, PQ) /* enqueue an empty predicate path in PQ */
8: while PQ �= ∅ do
9: ppathpre ← dequeue(PQ)

10: for each p ∈ PD do
11: ppath ← append p to ppathpre
12: if Vlist(ppath) can be skipped (7) then
13: continue;
14: end if
15: if isUpdate then
16: vlist ← UpdateVlist(ppath); /* Incremental update (Table 1) */
17: else
18: vlist ← CreateVlist(ppath); /* Build using (6) */
19: end if
20: if vlist is not empty then
21: if ppath is discriminative and frequent then
22: RP-index.insert(ppath, vlist);
23: end if
24: if |ppath| < maxL then
25: enqueue(ppath, PQ);
26: end if
27: end if
28: end for
29: end while

from (6), Vlist(ppath) is built from both Vlist(ppathpre) and D(p), where p is the last
predicate of ppath and ppathpre is the longest proper prefix of ppath. Therefore, if
neither of these components is changed during the update, Vlist(ppath) does not need
to be updated. For example, assume that p1 ∈ PU and that there exist two predicate
paths, 〈p1, p2, p3〉 and 〈p1, p2, p3, p4〉, in the RDF graph. If Vlist(〈p1, p2, p3〉) is not
changed by the updates, and p4 �∈ PU , then Vlist(〈p1, p2, p3, p4〉) is not affected by
update U , even though 〈p1, p2, p3, p4〉 includes p1.

Table 1 summarizes the update methods of Vlist(ppath) for |ppath| > 1. �+ and
�− are the sets of inserted and deleted vertices of Vlist(ppathpre), respectively. In
Table 1, ‘rebuild’ means that the Vlist should be rebuilt using the createVlist function.
Note that if p ∈ PU− or �− �= ∅, Vlist(ppath) should be rebuilt. Additionally, note
that there are four cases that do not require rebuilding. For three of them, the Vlist
can be updated by adding some vertices; for one case, there is no need to update.

We share the procedure with the building process (using isUpdate = true). For
each predicate path, the UpdateVlist(ppath) function checks the delta of the prefix
Vlist and the existence of the last predicates in PU+ and PU− , and updates the Vlists
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Table 1 Incremental update method of Vlist(ppath)

p ∈ PU+ p �∈ PU+ p ∈ PU−
p �∈ PU− p �∈ PU−

�+ �= ∅ Add �+
� D(p) and Add �+

� D(p) Rebuild
�− = ∅ Vlist(ppathpre) � U+(p)

�+ = ∅ Add Vlist(ppathpre) �U+(p) None Rebuild
�− = ∅
�− �= ∅ Rebuild Rebuild Rebuild

�+(�−): the set of inserted (deleted) vertices of Vlist(ppathpre)

according to Table 1. Besides updating the existing Vlists, some Vlists should be
created by the update. The Vlists for the newly created predicate paths should be
created. It is also possible that a non-discriminative or infrequent predicate path in
the old version becomes discriminative and frequent in the updated RP-index, and
vice versa. UpdateVlist(ppath) creates these Vlists, as well as updating existing Vlists.

There are several ways to reduce the updating overhead of the RP-index. For
example, the RP-index can be updated in the background, while accepting user-
queries. When committing the updates of the RDF-store, all Vlists to be updated
are marked as ‘stale’. Then, a background process starts to update the stale Vlists,
and updated Vlists become ‘normal’. The query compiler should check the status of
the Vlists to be used. If the considered Vlist is stale, the query compiler does not
use it. Using this method, we can reduce the downtime incurred by updating the RP-
index. Additionally, note that updating caused by deletion can be deferred. This is
because the vertices to be deleted in Vlists do not cause false negatives and do not
affect the query results.

7 Experimental results

We have implemented R3F on top of the open-source RDF-3X system (version
0.3.6).1 R3F was written in C++ and compiled with g++ with the −O3 flag for the
experiments. Implementation includes the RFLT operator, extension of the query
optimizer, and the RP-index builder.

All experiments were conducted on a hardware platform with eight 3.0 GHz
Intel Xeon processors, 16 GB of memory, and running the 64-bit 2.6.31-23 Linux
Kernel. We ran the experiments using five datasets: DBpedia SPARQL Benchmark
(DBSPB) [29], Lehigh University Benchmark (LUBM) [16], Social Network Intel-
ligence Benchmark2 (SNIB), Yet Another Great Ontology 2 (YAGO2) [19], and
SPARQL Performance Benchmark (SP2B) [36]. DBSPB is a synthetic dataset, but
it simulates the data distribution of DBpedia [5] and has the characteristics of a real-
world dataset [29]. LUBM is a benchmark dataset whose domain is the university,
and SNIB is another synthetic dataset whose domain is a social network site. YAGO2

1http://code.google.com/p/rdf3x/
2http://www.w3.org/wiki/Social_Network_Intelligence_BenchMark
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is a knowledge-base derived from Wikipedia,3 WordNet [12], and GeoNames,4 and
SP2B is a benchmark that simulates the DBLP scenario.5

The benchmark datasets (DBSPB, LUBM, SNIB, and SP2B) have their own scale
factors. We used the database size parameter of 200 % for DBSPB, generated 10,000
universities for LUBM, 30,000 users for SNIB, and 144 GB-size triples for SP2B.
These datasets have different characteristics, as shown in Table 2. DBSPB has a large
number of predicates, while the others have a relatively small number of predicates.
This is because DBSPB is a collection of data from various domains. In contrast,
LUBM, SNIB, and SP2B are single-domain datasets, and YAGO2 is made from
three data sources. Using DBSPB, we can evaluate our approach with a more realistic
and heterogeneous dataset.

7.1 RP-index size

We built three RP-indices (maxL = 3) for each dataset by varying the following
parameters: γ , ψ(l), and reverse predicates. Table 3 shows the three different settings
for the RP-indices. We use the frequent threshold function ψ(l) = ((l − 1)/maxL)

2 ×
n, where n is chosen appropriately for each dataset (we use 1,000 for DBSPB,
SNIB and SP2B, and 10,000 for LUBM and YAGO2). We call RP-indices under
Setting 3 reduced RP-indices, because they are built for the discriminative and
frequent predicate paths.

Tables 4 and 5 show the number of Vlists and the size of RP-indices built for each
dataset. Note that the number of Vlists in LUBM under Setting 1 is only 122, which
is much smaller than the number of possible predicate paths (183). This is because
LUBM has a relatively structured scheme, almost similar to the relational table.
Next, as this table shows, the inclusion of reverse predicates increases the number of
Vlists and the size of the RP-index significantly (comparing Setting 1 with Setting 2).
For DBSPB, we could not even build an RP-index under Setting 2, as it was too large
to complete the construction (more than 200 GB). This is because the addition of the
reverse predicates causes an increase in the possible predicate paths to be indexed.
Nonetheless, we could reduce the size of the RP-index effectively by storing only
Vlists for the discriminative and frequent predicate paths (Setting 3).

7.1.1 RP-index with the predicate variable

We propose some methods for handling queries with predicate variables in
Section 4.5, one of which is to index the predicate variables when building the RP-
index. In this section, we discuss the effects of indexing the predicate variable on
the size of the RP-index. We built the RP-index with the predicate variables for the
LUBM and YAGO2 datasets, using Setting 3 for the building parameters.

Table 6 shows the size of the RP-index with the predicate variables and the
number of Vlists with the predicate variables. We can see that including predicate
variables significantly increases the size of the RP-index and the number of Vlists.
However, if we adjust the parameters of the RP-index appropriately, we expect to

3http://www.wikipedia.org
4http://www.geonames.org
5http://www.informatik.uni-trier.de/~ley/db/
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Table 2 Statistics about datasets

Predicates URIs Literals Triples RDF-3X size
(millions) (GB)

DBSPB 39,675 38,401,849 154,972 183 25
LUBM 18 217,006,887 111,613,881 1,335 77
SNIB 44 35,197,509 2,119,818 387 17
YAGO2 93 6,872,931 22,452,390 37 9
SP2B 77 267,134,673 523,228,402 1,399 123

Table 3 RP-index parameter
settings

Setting maxL γ ψ(l) Reverse predicate

1 3 1 0 Not included
2 3 1 0 Included
3 3 0.7 (l − 1/maxL)2 × n Included

Table 4 Number of Vlists in
RP-indices

Setting DBSPB LUBM SNIB YAGO2 SP2B

1 34,205,462 122 1,193 8,479 4,875
2 N/A 1,718 10,070 167,114 389,070
3 120,424 63 253 10,023 86,050

Table 5 Total size of
RP-indices (GB)

Setting DBSPB LUBM SNIB YAGO2 SP2B

1 2.85 0.307 1.46 0.08 2.05
2 N/A 19.12 8.83 2.20 87.99
3 6.52 1.39 0.47 0.79 21.97

Table 6 RP-index with the
predicate variables (setting 3)

LUBM YAGO2

Size (GB) 11 6.3
# of Vlists with predicate vars. 314 12,562
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be able to reduce the size overhead due to the inclusion of the predicate variables.
We leave the tuning and optimization techniques of indexing predicate variables for
future work.

7.2 Query evaluation performance

In this section, we present the query performance of R3F using the three RP-indices
built in the previous section. For the experiments, we made four test queries for
each dataset (included in the Appendix). Our test queries have many joins (4–5) and
relatively long paths. Each query was executed a total of 10 times, and the average
execution time is presented.

Figure 11 shows the execution times (for DBSPB, Setting 2 is not included because
it could not be built). In this figure, we can see that R3F reduces the execution time
of most queries. In particular, there are some queries for which R3F reduces the
execution times significantly, by a factor of more than 5 (for instance, Q1 of LUBM,
Q2 of SNIB, Q1 of YAGO2, and Q2 of SP2B). These queries have selective path
patterns, which R3F can use to effectively filter redundant triples. However, there
also exist queries (e.g., Q1 of DBSPB, Q3 of LUBM, and Q4 of SP2B) for which
R3F is not very effective. These queries do not have the selective path patterns that
R3F uses for triple filtering.

In most cases, the RP-indices under Settings 2 and 3 (with the reverse predicates)
are more effective than those under Setting 1 (for Q2 of DBSPB, Q4 in LUBM,
and Q1 and Q3 of SNIB, Q3 and Q4 of YAGO2, and Q2 and Q3 of SP2B). This
is because RP-indices with reverse predicates index more predicate paths for use
in triple filtering. Additionally, we can observe that, although the reduced RP-
indices under Setting 3 are much smaller than the RP-indices under Setting 2, their
filtering power is not significantly degraded. This is because the criteria proposed
in Section 4.3 do not harm the filtering power of the RP-index much. However,
for some queries (for example, Q4 of DBSPB), the execution time of Setting 3 is
longer than that of Setting 1. This is because the reduced RP-index removes Vlists
that are effective for the queries. Nonetheless, the performance of Setting 3 is still
good compared to RDF-3X.

Figure 12 shows the intermediate results generated during query evaluation for
each query. The intermediate results counted in these experiments are the outputs of
scan operators and join operators. We can see that the results have some correlation
with the execution times, and that the number of redundant intermediate results is
reduced considerably for queries where R3F is effective.

7.2.1 Filter usage

Table 7 shows the usage information of Vlists for SNIB queries: the number of Vlists
for each length of predicate path and for predicate paths with reverse predicates,
the size of Vlists and the triples read in scan operators. From this table, we can
see that the size of the Vlists is generally small compared to the size of the triple
data, and therefore R3F incurs little overhead above the original query processing.
By comparing Setting 1 and Setting 2, we can see that the number of Vlists to be
applied is increased by the reverse predicates. Also, note that only 3-length predicate
paths are used in Setting 1 and Setting 2, whereas in Setting 3, 1-length and 2-length
predicate paths are used. This is because 3-length predicate paths are removed, as
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Figure 11 Query execution time

they are not discriminative or frequent, and replaced by shorter predicate paths in
Setting 3.

7.2.2 Path query

In order to evaluate R3F for more general cases, we generated random path-
pattern queries with lengths of 4, 6, 8, and 10 (an n-length path-pattern query has
n triple patterns connected as a path) for the YAGO2 dataset. For each length, we
generated 100 queries by varying the predicates (including reverse predicates). We
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Figure 12 Intermediate results

also evaluated the effects of user-defined parameters of the RP-index (maxL, γ , and
ψ(l)) using these queries.

Figure 13 shows the average execution time for each path length. We can see that
path queries are processed more efficiently using R3F. The results are similar to those
in the previous experiments using the test queries. The RP-index under Setting 2
is most effective, and the RP-index under Setting 3 is next. However, we can see
that the evaluation times do not improve as much as in the previous experiments.
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Table 7 Filter usage (SNIB) Setting Query Path length Reverse Vlist size Data size

1 2 3 (MB) (MB)

1 1 0 0 4 0 4.98 62.92
2 0 0 1 0 1.03 204.43
3 0 0 4 0 3.14 97.78
4 0 0 4 0 0.09 11.32

2 1 0 0 11 7 6.15 40.48
2 0 0 7 6 16.75 180.23
3 0 0 5 3 8.08 78.60
4 0 0 18 12 0.55 11.32

3 1 2 1 1 2 0.75 40.48
2 0 2 2 2 16.36 186.18
3 0 3 1 2 8.47 78.60
4 4 0 0 2 0.05 11.32

This is because that we generated 100 path queries, and the averaged times are
presented. In the query sets, there exist queries without selective path patterns, for
which R3F is not effective. And some of queries have no results. These queries tend
to be processed quicker than queries with results, and RDF-3X process these queries
very fast. As a result, the averaged improvement is not as impressive as the previous
experiments. Also, we can observe that the execution times do not increase linearly
with the path length (the execution times for 8-length queries are longer than those
of 10-length queries). This is because, as the path queries increase, the possibility that
they have no results also increases.

Figures 14, 15, and 16 show the effect of the three RP-index parameters on its
performance and size. In Figure 14, we decrease the discriminative ratio γ with
fixed maxL = 3 and ψ(l) = 0. From Figure 14a, we can see that the execution
times increase as γ decreases. However, the degradation is slight compared to the
decreased size of the RP-index (Figure 14b). In Figure 15, we increase n in the
frequency function ψ(l) = (l − 1/maxL)

2 × n with fixed maxL = 3 and γ = 1. From
this figure, we can see that the execution times increase as n increases. Again, the
degradation is tolerable considering the decreased size of the RP-index. Figure 16
shows the effects of maxL. Contrary to the previous two parameters, an increase in
maxL does not give a notable increase in performance, although the size of the RP-

Figure 13 Path query
(YAGO2)
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Figure 14 Effects of discriminative ratio (YAGO2)
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Figure 15 Effects of frequency function (YAGO2)
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Table 8 Cardinality estima-
tion errors (using upper
bound)

Query DBSPB LUBM SNIB YAGO2 SP2B

1 1.81 2.13 2.07 146.04 24.84
2 10.77 1.14 3.56 3593.3 1.28
3 13.00 2.63 12.3 1.92 6.22
4 11.31 13.57 1.09 2.14 186.6

index increases exponentially. Therefore, as we discussed in Section 4.6, we do not
need a large maxL value.

7.2.3 Accuracy of cardinality estimation

In this section, we study the accuracy of the cardinality estimation technique dis-
cussed in Section 5.2. We calculate the q-error max(c/ĉ, ĉ/c) [28], where c is the
real cardinality and ĉ is the estimated cardinality. This is the method used in [30] to
evaluate estimation techniques. In Section 5.2, we need to estimate the intersection
of Vlists and the input sortkey columns, and for this, we use the upper bound of the
intersection. Tables 8 and 9 show the q-errors for the experimental queries. The q-
errors in Table 8 are calculated using the upper bound, as in Section 5.2, and those in
Table 9 are a result of using the exact intersections. From these tables, we can observe
that the estimations are more accurate when using the exact intersections, except for
YAGO2. The exception of YAGO2 is because the uniform distribution assumption
does not hold. We can also note, from Table 9, the estimations are more accurate for
the benchmark datasets (LUBM, SNIB and SP2B) than for the real-world datasets
(DBSPB and YAGO2). This is because the assumption of the uniform distribution
of sortkey values is more adequate for the benchmark datasets. Except for query 2
in YAGO2, we can see that the estimations are generally accurate.

From these results, we can deduce that we need a more accurate estimation of
the intersection size and a method to handle cases in which the uniform distribution
assumption does not hold.

7.3 Incremental update of the RP-index

In this section, we present experimental results for the incremental update of the RP-
index. We measured the incremental update times of the RP-index and compared
them to the total rebuilding times.

First, we measured the update time, varying the number of predicates in the
updates (we refer to a set of updated triples as an update). We use a subset of
the DBSPB dataset as D. This has 3,000,000 triples and 1,000 predicates (|D| =
3, 000, 000, |PD| = 1, 000). We generated five insert updates, each of which has
100,000 triples (|U+| = 100, 000, |U−| = 0), increasing the number of predicates in

Table 9 Cardinality estima-
tion errors (using exact
intersection)

Query DBSPB LUBM SNIB YAGO2 SP2B

1 1.74 1.03 1.13 134.84 1.52
2 10.76 1.14 1.34 5212.7 1.01
3 12.30 2.07 1.09 2.38 1.07
4 11.31 1.25 1.09 6.83 16.90
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the updates. Additionally, we generated another five delete updates, each of which
has only 100,000 deleted triples (|U+| = 0, |U−| = 100, 000).

Figure 17 shows the update times. As we can see, the update times are pro-
portional to the number of predicates in the updates. This is because the number
of Vlists to update increases with the number of predicates. However, the total
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rebuilding times are almost equal, as the number of predicates in D is not different.
Furthermore, note that the update times for insert updates are less than those for
delete updates. This is because a Vlist can be updated using the delta of the Vlist
for the prefix predicate path, whereas, for delete updates, Vlists are updated using
rebuilding.

Next, we measured the effect of the update size on the update time. In this
experiment, we generated three types of update: insert-only updates, delete-only
updates, and updates with both inserts and deletes, increasing the number of updated
triples. Additionally, for each type, updates with 300 predicates and 600 predicates
were generated. Figure 18 shows the update times. For insert updates, both the
incremental update times and the rebuild times increase as the sizes of the updates
increase. In contrast to insert updates, for delete updates and updates with inserts and
deletes, the incremental update times are similar to the rebuild times. For updates
with inserts and deletes, because of the deleted triples, the results are similar to
the delete updates. To alleviate the overhead of the deleted triples, we can use the
workarounds in Section 6.2.

8 Conclusions and future work

In this paper, we proposed a novel triple filtering framework called R3F in order to
reduce the number of redundant intermediate results in SPARQL query processing.
R3F filters out redundant triples using a necessary condition for results based on
the incoming predicate path information. To organize the filter data for R3F, we
designed an RP-index and considered its size problem and maintenance issues. In
addition, we presented the RFLT operator, which conducts the triple filtering, and
proposed a cost function to integrate it with the cost-based query optimizer. Through
comprehensive experiments using various large-scale RDF datasets, we demon-
strated that R3F is very effective in reducing the number of redundant intermediate
results, and improved query performance for complex SPARQL queries.

In future research, we plan to extend R3F to exploit the graph features of RDF
data and to explore the application of R3F in parallel and distributed environments,
such as MapReduce. We will also investigate a more accurate estimation method for
the output cardinalities of filtered triples.

Acknowledgement This work was supported by the National Research Foundation of Ko-
rea(NRF) grant funded by the Korea Government(MSIP) (No. 20120005695).

Appendix

Query sets

We include the queries used in our experiments. For the queries, we use the following
prefixes.

PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX lubm:<http://www.lehigh.edu#>
PREFIX dbpowl:<http://dbpedia.org/ontology/>
PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>
PREFIX dbpprop:<http://dbpedia.org/property/>
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PREFIX foaf:<http://xmlns.com/foaf/0.1/>
PREFIX sioc:<http://rdfs.org/sioc/ns#>
PREFIX sib:<http://www.ins.cwi.nl/sib/>
PREFIX sibv:<http://www.ins.cwi.nl/sib/vocabulary/>
PREFIX geo:<http://www.w3.org/2003/01/geo/wgs84_pos#>
PREFIX yago2:<http://www.mpii.de/yago/resource/>
PREFIX dc:<http://purl.org/dc/elements/1.1/>
PREFIX dcterms:<http://purl.org/dc/terms/>
PREFIX bench:<http://localhost/vocabulary/bench/>
PREFIX swrc:<http://swrc.ontoware.org/ontology#>

DBSPB

Q1 ?a dbpprop:ground ?b. ?a foaf:homepage ?c. ?b rdf:type ?v8.
?d rdfs:label ?e. ?d dbpowl:postalCode ?f. ?d geo:lat ?g.
?d geo:long ?h. ?b dbpowl:location ?d. ?b foaf:homepage ?i.
?j dbpprop:clubs ?a.

Q2 ?a rdf:type dbpowl:Person. ?a dbpprop:name ?c. ?e rdfs:label ?f.
?a dbpprop:placeOfBirth ?d. ?e dbpprop:isbn ?g.
?e dbpprop:author ?a. ?j dbpprop:author ?k. ?k rdfs:label ?b.
?e dbpprop:precededBy ?j. ?k dbpprop:name ?c.
?k dbpprop:placeOfBirth ?d.

Q3 ?a dbpprop:nationality ?b. ?a rdfs:label ?c. ?a rdf:type ?e .
?b rdfs:label ?d. ?b rdf:type ?e. ?b dbpprop:name ?f.

Q4 ?a foaf:name ?b. ?a rdfs:comment ?c. ?a rdf:type ?d.
?a dbpprop:series ?e. ?e dbpowl:starring ?f. ?f rdf:type ?i.
?g dbpowl:starring ?f. ?h dbpowl:previousWork ?g.

LUBM

Q1 ?a rdf:type lubm:GraduateStudent. ?b rdf:type lubm:University.
?c rdf:type lubm:Department. ?c lubm:subOrganizationOf ?b.
?a lubm:memberOf ?c. ?a lubm:undergraduateDegreeFrom ?b.

Q2 ?a rdf:type lubm:FullProfessor.
?a lubm:headOf ?b. ?e lubm:undergraduateDegreeFrom ?c.
?a lubm:teacherOf ?d. ?e rdf:type lubm:GraduateStudent.
?b lubm:subOrganizationOf ?c. ?e lubm:teachingAssistantOf ?d.

Q3 ?a rdf:type lubm:GraduateStudent. ?b lubm:headOf ?c.
?b rdf:type lubm:FullProfessor. ?a lubm:advisor ?b.
?d lubm:publicationAuthor ?a. ?d lubm:publicationAuthor ?b.

Q4 ?a rdf:type lubm:UndergraduateStudent. ?b lubm:headOf ?d.
?b rdf:type lubm:FullProfessor. ?a lubm:advisor ?b.
?c rdf:type lubm:Course. ?a lubm:takesCourse ?c.
?b lubm:teacherOf ?c.

SNIB

Q1 ?a foaf:knows ?b. ?a sibv:Engaged_with ?c.
?c sioc:moderator_of ?d. ?b foaf:knows ?c.
?d sioc:container_of ?e. ?e sib:like ?a.

Q2 ?a sib:initiator ?b. ?a sib:memb ?b. ?a sib:memb ?c.
?b foaf:knows ?e. ?g sib:tag ?b. ?g a sib:Photo.
?a sib:declined ?d. ?e sibv:Married_with ?c.
?c sioc:creator_of ?f. ?f sioc:container_of ?g.
?f a sioct:ImageGallery.
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Q3 ?a sib:tag ?b. ?b foaf:knows ?c.
?c sibv:Married_with ?d. ?e sioc:container_of ?a.
?d sioc:creator_of ?e.

Q4 ?a foaf:knows ?b. ?b foaf:knows ?c. ?c foaf:knows ?d.
?d foaf:knows ?a. ?b sibv:Married_with ?d.

YAGO2

Q1 ?a yago2:isCitizenOf ?b. ?a yago2:hasPreferredName ?c.
?a yago2:hasAcademicAdvisor ?d. ?b yago2:isLocatedIn ?e.
?d yago2:isCitizenOf ?f. ?d yago2:hasPreferredName ?g.
?f yago2:isLocatedIn ?e.

Q2 ?a yago2:wasBornIn ?b. ?a yago2:isCalled ?c.
?a yago2:isMarriedTo ?b. ?b yago2:isLocatedIn ?d.
?a yago2:isCalled ?e. ?a yago2:livesIn ?f.
?f yago2:isLocatedIn ?d.

Q3 ?a yago2:hasFamilyName ?b. ?a yago2:directed ?c.
?d yago2:hasFamilyName ?e. ?d yago2:actedIn ?c.
?d yago2:isMarriedTo ?a. ?c yago2:isCalled ?e.
?c yago2:hasPreferredName ?f. ?c rdf:type ?g.

Q4 ?a yago2:isKnownFor ?b. ?a yago2:directed ?c.
?a yago2:wasBornIn ?d. ?c yago2:wasCreatedOnDate ?e.
?c yago2:isCalled ?f. ?c rdf:type ?g.
?b rdf:type ?h. ?d yago2:isLocatedIn ?i.

SP2B

Q1
?a dcterms:references ?b. ?a a bench:Inproceedings.
?b rdf:_1 ?c. ?b rdf:_2 ?d.
?c dcterms:references ?e.
?e rdf:_1 ?f. ?e rdf:_2 ?g.
?d dcterms:references ?h.
?h rdf:_1 ?i. ?h rdf:_2 ?j.

Q2 ?a swrc:editor ?b. ?c dc:creator ?b.
?c dcterms:partOf ?a.

Q3 ?a dc:creator ?b. ?b foaf:name ?c.
?a dc:title ?d. ?a bench:abstract ?e.
?a dcterms:references ?f. ?f rdf:_50 ?g.

Q4 ?a swrc:editor ?b. ?c swrc:editor ?b.
?b foaf:name ?d. ?a dc:creator ?b.
?a dc:title ?e. ?a dcterms:references ?f.
?f rdf:_10 ?g.
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