
Expert Systems with Applications 41 (2014) 4596–4607
Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
RG-index: An RDF graph index for efficient SPARQL query processing
http://dx.doi.org/10.1016/j.eswa.2014.01.027
0957-4174/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +82 28801830.
E-mail addresses: kskim@idb.snu.ac.kr (K. Kim), bkmoon@snu.ac.kr (B. Moon),

hjk@snu.ac.kr (H.-J. Kim).
Kisung Kim ⇑, Bongki Moon, Hyoung-Joo Kim
School of Computer Science and Engineering, Seoul National University, 1 Gwanak-ro, Seoul 151-742, Republic of Korea

a r t i c l e i n f o a b s t r a c t
Keywords:
RDF
SPARQL
Query optimization
Triple filtering
Intermediate results
As the size of Resource Description Framework (RDF) graphs has grown rapidly, SPARQL query processing
on the large-scale RDF graph has become a more challenging problem. For efficient SPARQL query pro-
cessing, the handling of the intermediate results is the most crucial element because it generally involves
many join operators. Recently, a triple filtering method, called the RP-filter, which uses a path-based
index, was proposed. It can reduce the intermediate results effectively by filtering out irrelevant triples
in advance. However, its filtering power is limited, because it uses only the path information of the RDF
graph. In this paper, we extend the triple filtering method to exploit the graph-structural information,
and propose the RDF graph index (RG-index). We address the problem of the RG-index, which is caused
by the indexing of the graph patterns, by indexing only effective graph patterns for the triple filtering. In
addition, we propose an efficient method for building the RG-index in which a frequent graph pattern
mining algorithm is adapted. We conducted comprehensive experiments on large-scale RDF datasets
and demonstrated that the RG-index can reduce redundant intermediate results more effectively than
can the RP-filter.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The Resource Description Framework (RDF) (Klyne & Carroll,
2004) was proposed as the core data model of the Semantic Web,
and SPARQL (Prud’hommeaux & Seaborne, 2008) was recom-
mended by W3C as the standard query language for RDF data.
RDF is a flexible, schema-free and graph-structural data model. It
has been utilized as a unified data model in various areas, such
as bioinformatics (Belleau, Nolin, Tourigny, Rigault, & Morissette,
2008; Redaschi & Consortium, 2009), media data (Kobilarov
et al., 2009), Wikipedia (Hoffart, Suchanek, Berberich, & Weikum,
2013), social networks (Mika, 2004), and government open data
(Sheridan, 2010). Today, RDF data on the Web has become web-
scale graph data, so that we can call it big graph data. However,
the graph-structural data model of the RDF and the graph pattern
matching nature of SPARQL queries pose significant challenges for
efficient processing of SPARQL queries for large-scale RDF data.

In order to process large-scale RDF data, many RDF systems
have been proposed, i.e., Jena (Carroll et al., 2004), Sesame (Broek-
stra, Kampman, & van Harmelen, 2002), SW-store (Abadi, Marcus,
Madden, & Hollenbach, 2009), RDF-3X (Neumann & Weikum,
2008), etc. They store RDF data in relational tables and process
SPARQL queries using relational operators, such as scan and join
operators. We call these RDF systems relation-based RDF stores,
because they use the relational model. The main problem of rela-
tion-based RDF stores is that they need too many join operations
for evaluating SPARQL queries, especially those having complex
and large graph patterns. Thus, to address this problem, many
techniques have been proposed, i.e., the clustered property table
(Carroll et al., 2004), vertical partitioning (Abadi et al., 2009), mul-
tiple indexing (Neumann & Weikum, 2008; Weiss, Karras, & Bern-
stein, 2008). These techniques have been focused on the optimized
storage layout, indexing methods and efficient join processing.
However, recently the handling method of the intermediate results
during SPARQL query processing is also recognized as an important
issue. It is because a plenty of redundant intermediate results can
be generated during SPARQL query evaluation.

In order to handle the redundant intermediate results problem,
U-SIP (Neumann & Weikum, 2009) and RP-filter (Kim, Moon, &
Kim, 2011), have been proposed. Their objectives are to improve
the query evaluation by reducing redundant intermediate results
as early as possible. U-SIP uses a dynamic filtering method exploit-
ing the natures of the merge join and the hash join. However, it has
limitation that the filters are generated run-time and could not ex-
ploit the graph structural information of RDF graphs. In order to
overcome this problem, RP-filter uses a path-based index which in-
dexes the incoming path information of RDF graphs. It uses addi-
tional filtering operators in the execution plan to filter out

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2014.01.027&domain=pdf
http://dx.doi.org/10.1016/j.eswa.2014.01.027
mailto:kskim@idb.snu.ac.kr
mailto:bkmoon@snu.ac.kr
mailto:hjk@snu.ac.kr
http://dx.doi.org/10.1016/j.eswa.2014.01.027
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa

K. Kim et al. / Expert Systems with Applications 41 (2014) 4596–4607 4597
irrelevant triples among the input triples and determines the irrel-
evance of triples for the given query. However, RP-filter also has
limitations that it uses only the path information.

In order to explain the limitation of RP-filter, let us consider the
example in Fig. 1. It shows a SPARQL query graph, its execution
plan, and four fragments of an RDF graph: R1;R2, R3, and R4. In
the execution plan, Join1 produces the intermediate results match-
ing the subgraph q1 in the query graph: g1; g2, and g3 in the RDF
graph. However, because only R1 is matched to the query graph,
it is the final result for the query, and g2 and g3 become redundant
intermediate results. RP-filter can reduce these intermediate re-
sults using the necessary condition for the final results that the
matching vertices for ?v3 should have two incoming predicate
paths: hp3; p2i and hp4; p2i. Using this necessary condition, RP-filter
can avoid producing g3 in Join1, because v14 does not have the
incoming predicate path hp4; p2i. However, note that g2 is still pro-
duced because v6 has both incoming predicate paths and satisfies
the necessary condition. In order to remove these intermediate re-
sults, we should be able to consider the graph-structural
information.

In this paper, we propose a graph index called RG-index (RDF
graph index). The RG-index indexes the graph patterns in the
RDF graph rather than the path information, and therefore, it can
enhance the filtering effects. It indexes the graph patterns in RDF
graphs and can provide vertex lists matching for a specific graph
patterns. In order to index the graph patterns, we adapt the gSpan
(Yan & Han, 2002) algorithm, one of the most well known algo-
rithms for mining frequent graph patterns. Originally, gSpan was
developed for treating a transactional graph database, which com-
prises many small-size graphs. Thus, to apply the gSpan to the RDF
graph, which is a single large graph, the gSpan algorithm has to be
modified. We propose an adaptation method of gSpan for RDF
graphs, such as a canonical representation of RDF graph patterns,
calculating their support and reducing redundant pattern genera-
tion. Further, to efficiently processing graph pattern mining, we
also propose a mechanism for caching the intermediate results.

The main problem arising from indexing the graph patterns is
that the index size can grow prohibitively large. This is because
there exists a large number of graph patterns, and the number of
graph patterns grows exponentially with its size. We solve this size
Fig. 1. RDF graph and SPARQL query graph.
problem of the RG-index by indexing a fraction of the graph pat-
terns rather than all possible graph patterns. This approach is
applicable because the objective of the RG-index is to provide
the filter data, and therefore, it is enough to index graph patterns
that are effective for the triple filtering. Then, the problem becomes
how to select the graph patterns that are effective for the triple fil-
tering. To address this problem, we propose several techniques to
reduce the size of the RG-index while retaining its filtering power.

The triple filtering is performed in a relational operator called
RFLT (RDF Filter). The RFLT operator filters its input triples using
the vertex lists from the RG-index. It uses a fast merging algorithm
for the triple filtering, and therefore the filtering can be performed
very efficiently. In order to integrate the RFLT operators into the
cost-based query optimizer, we also elaborate the cost model
and the cardinality estimation method for the RFLT operator.

The contributions of this paper are as follows.

1. We describe the design of the RG-index and propose an effi-
cient building algorithm adapted from the gSpan algorithm;

2. We present the RFLT operator, which conducts triple filter-
ing efficiently. In addition, we develop the cost model and
the cardinality estimation method for the RFLT operator;

3. We describe the implementation of the RG-index in the
RDF-3X system, which is an open source RDF store, and
comprehensive experiments with very large-scale real-life
and synthetic RDF datasets, which demonstrate that the
performance of our methods is superior to that of the exist-
ing methods.

The remainder of the paper is organized as follows. In Section 2,
we survey existing works for the SPARQL query processing. In this
section, a detailed description of the RDF-3X is also provided. In
Section 3, we provide a formal data model of the RDF and SPARQL
and introduce some necessary notation. In Section 4, we present
the proposed RG-index in detail and describe the algorithm used
to build the RG-index. The processing of triple filtering and the
RFLT operator are described in Section 6. We present a perfor-
mance study in Section 7 and our conclusions in Section 8.
2. Related work

In this section, we present previous work on RDF stores, and
graph pattern mining and graph indexing.
2.1. RDF stores

Relation-based RDF stores use relational models to store RDF
data and translate SPARQL queries into relational algebraic expres-
sions (Chebotko, Lu, & Fotouhi, 2009). The main problem of rela-
tion-based RDF stores is that they need too many join operators
to process SPARQL queries. Several approaches have been proposed
for resolving this problem, which can be summarized as: (1)
Reducing the number of joins; (2) making the join operators them-
selves efficient; and (3) reducing the inputs of join operators.

The property table can be considered as belonging to the first
approach. It was proposed by Jena (Carroll et al., 2004) and Oracle
(Chong, Das, Eadon, & Srinivasan, 2005), and reduces the number of
joins by clustering several properties accessed together in a single
property table. Because it stores the join results in a single table, it
can reduce the number of joins. However, the property table ap-
proach has several problems in that it requires the users’ clustering
decisions and the previous knowledge about the query workload
(Abadi et al., 2009). In addition, it incurs many null values or mul-
ti-values, which are hard to process, because it is created by denor-
malizing the triple table (Abadi et al., 2009).

Fig. 2. Execution plan using the triple filtering.

4598 K. Kim et al. / Expert Systems with Applications 41 (2014) 4596–4607
Several methods of processing joins efficiently also exist. In SW-
Store (Abadi et al., 2009), the triple table is partitioned vertically
according to the predicate values. Since it uses a column-oriented
store as its underlying store, triples are stored as sorted by the sub-
ject column. Therefore, the subject-subject joins can be processed
efficiently using the fast merge join in SW-Store. However, the
merge joins can be used only for the subject-subject joins in SW-
Store. To extend the possibilities of using merge joins, in Hexastore
(Weiss et al., 2008) and RDF-3X (Neumann & Weikum, 2008), the
multiple indexing approach is applied. They index triples by all
six possible orderings of (subject, predicate, object). Triples can
be retrieved for any orderings, and merge joins can be used for
joins other than the subject-subject join.

U-SIP (Ubiquitous Sideways Information Passing) (Neumann &
Weikum, 2009) is used for reducing the inputs of join operators.
U-SIP dynamically builds filters to provide information about the
subject IDs or object IDs to be read next (we call this the next infor-
mation). RDF-3X uses this next information to skip reading unnec-
essary disk blocks. While scanning the leaf blocks sequentially, if it
determines that the next block can be skipped, it performs the
B+tree index look-up to skip unnecessary blocks. In these ways,
U-SIP can prune the triples that are irrelevant for the given query
and reduce the input size of joins. U-SIP and our triple filtering
method share the same objective of reducing the inputs of joins.
However, our method exploits the graph-structural information,
and therefore, it is more effective for RDF graphs.

There are also other approaches for SPARQL query processing.
GRIN index (Udrea, Pugliese, & Subrahmanian, 2007), DOGMA
(Bröcheler, Pugliese, & Subrahmanian, 2009), PIG (Tran & Ladwig,
2010), and gStore (Zou, Mo, Chen, Özsu, & Zhao, 2011) use graph-
traversal approaches and graph indexing. These systems focus on
reducing the search space of the graph traversing algorithms using
the graph indices. While we also use a graph index (RG-index),
our approach is different from these systems in that we focus on
reducing the input size of joins in relation-based RDF stores.

Recently, RDF stores based on a clustered environment, such as
MapReduce, have also been proposed, i.e., HadoopRDF (Husain,
McGlothlin, Masud, Khan, & Thuraisingham, 2011), SHARD (Rohloff
& Schantz, 2010), multi-node extension of RDF-3X (Huang, Abadi,
& Ren, 2011), and Rya (Punnoose et al., 2012). In these distributed
RDF systems, reducing the join inputs can improve the query per-
formance more than do the single-node RDF stores, because it can
reduce the network overhead for transporting intermediate results.
RG-index can be applied in these systems.

2.2. Triple filtering method: RP-filter

The triple filtering method, RP-filter (Kim et al., 2011), was pro-
posed for reducing the redundant intermediate results. In this
method, an execution plan uses filtering operators, called RFLT,
which conduct triple filtering for scan operators. Fig. 2 shows an
execution plan using triple filtering. It uses two RFLT operators.
The RFLT operators check that the subjects or the objects of the in-
put triples satisfy the necessary structural conditions. For example,
the RFLT1 operator in Fig. 2 checks that the subjects of the input tri-
ples have two incoming predicates: hp3; p2i and hp4; p2i. In order to
check this condition, the method uses a path-based index called
the RP-filter. The RP-filter contains the vertex lists, which contain
vertex IDs with a specific incoming predicate path. The triple filter-
ing can be performed by merging the input triples and the vertex
lists, because the vertex lists are stored as sorted in the RP-filter.

2.3. Frequent graph pattern mining and graph indexing

There exist numerous bodies of literature focused on frequent
graph pattern mining (cf. Cheng, Yan, & Han (2010) for detailed
surveys). There are two problem formulations for graph mining
(Kuramochi & Karypis, 2004): the graph-transaction setting, that
is, many small graphs in a database; and the single-graph setting,
that is, a large single graph. The graph-transaction setting has
drawn more attention than the single-graph setting. The single-
graph setting is more general, because several graphs can be com-
bined into a single graph, and therefore, algorithms developed for
the single-graph setting can be used for the graph-transactional
setting (Kuramochi & Karypis, 2004). A frequent graph pattern
mining algorithm first generates the candidate graph patterns,
and then checks that its support is larger than the minimum sup-
port. If this condition is satisfied, the pattern is included in the re-
sults. The main focuses of the designers of frequent graph pattern
mining algorithms are how to generate candidate graph patterns
without generating duplicate patterns and how to prune infre-
quent patterns efficiently. To achieve these goals, they exploit
the a priori principle (Cheng et al., 2010; Kuramochi & Karypis,
2004; Yan & Han, 2002), and canonical labeling mechanisms for
representing the graph patterns are proposed. We adapt the gSpan
(Yan & Han, 2002) algorithm to build the RG-index. It uses the DFS
codes (Yan & Han, 2002) as the canonical representation of the can-
didate graph patterns and the depth-first manner of pattern gener-
ation. We discuss gSpan in more detail in Section 2.3.1.

Many graph indices have also been proposed for graph data.
Most graph indices that have been proposed are for the graph-
transaction setting, and they are focused on reducing the number
of the graph isomorphism testing (e.g., GraphGrep (Shasha, Wang,
& Giugno, 2002), gIndex (Yan, Yu, & Han, 2005), etc.). It is not easy
to apply these indices to the RDF graph, because a single large
graph is involved. Recently, graph indices for a large graph have
also been proposed, such as SAGA (Tian, McEachin, Santos, States,
& Patel, 2007), GraphQL (He & Singh, 2008), GADDI (Zhang, Li, &
Yang, 2009), and SPath (Zhao & Han, 2010). Although these indices
can be used in graph-based RDF stores, it is not trivial to apply
them in relational-based RDF stores, because they were designed
for use in the context of graph traversing algorithms.

2.3.1. Overview of gSpan
As already mentioned, we adapt gSpan algorithm (Yan & Han,

2002) to build RG-index. Therefore, we present its overview in this
section. gSpan generates graph patterns in a depth-first fashion.
That is, it starts from a 1-edge pattern and grows the pattern into
larger patterns by adding one edge to the pattern. The most impor-
tant issue in gSpan is minimizing the generation of the same graph
patterns. Because a graph pattern can be generated in several ways,
for efficient mining it is essential not to generate the patterns in
duplicate. To achieve this, the pattern generation of gSpan is lim-
ited to the minimum DFS codes; otherwise, it is possible that the
same patterns can be generated several times. If gSpan can ensure
that all minimum DFS codes are generated, the generations of the

Fig. 3. k-Neighborhood subgraph.

K. Kim et al. / Expert Systems with Applications 41 (2014) 4596–4607 4599
non-minimum DFS codes are redundant because any graph pattern
can be represented by the minimum DFS code. Therefore, for each
generated DFS code, gSpan checks whether it is the minimum DFS
code for the generated pattern, and if not, the DFS code is pruned
and not extended further.

In addition, to reduce the generation of non-minimum DFS
codes, gSpan uses the rightmost extension when adding an edge
to a graph pattern. The rightmost extension restricts the pattern
growth as follows. For a DFS code, the first and the last vertices
of the DFS traversal are called the root and the rightmost vertex,
respectively. The path from the root to the rightmost vertex is
called the rightmost path. The patterns can be grown such that a
forward edge can be added to vertices in the rightmost path, and
a backward edge can be added only to the rightmost vertex. If g
is extended by adding e according to the rightmost extension,
the extended pattern is denoted by g}r e.

The reason why gSpan uses the rightmost extension is that pat-
terns that are generated not by the rightmost extension are non-
minimum DFS codes. Further, the rightmost extension guarantees
that all minimum DFS codes are generated. Thus, gSpan guarantees
the completeness of the mining results while reducing the dupli-
cate pattern generation.

3. Preliminaries

3.1. RDF and SPARQL

In this section, we present the formal data model of the RDF and
SPARQL. We assume the existence of three pairwise disjoint sets: a
set of uniform resource identifiers (URIs) U; a set of literals L; and a
set of variables VAR. We assume that blank nodes have their local URIs
and treat them same as the resources. Variable symbols start with ‘‘?’’
to distinguish them from URIs and literals. A triple t 2 U � U � ðU [LÞ
(without variables) is called an RDF triple, and a triple
tp 2 ðU [VARÞ � U � ðU [L [VARÞ (triple with variables) is called a
triple pattern. It should be noted that in our model the joins that have
predicate variables are not considered, because this join type is rarely
used. In addition, various features of the RDF and SPARQL are omitted
for simplicity. For example, some features of the RDF, such as data
types, are not considered. We focus on SPARQL queries with basic
graph patterns. A basic graph pattern is a set of triple patterns
(Prud’hommeaux & Seaborne, 2008). Optional graph patterns and un-
ion graph patterns are not considered. However, our approaches can
be applied to queries having these features with minor modifications.

An RDF database D is a set of RDF triples, and a SPARQL query Q
is a set of triple patterns. For the RDF database D, a subset of U; PD,
is defined as a set of predicates. Formally, PD ¼ fpjp 2 U ^
9tðs; p; oÞ 2 Dg. An RDF database and a SPARQL query are mapped
into an RDF graph and a query graph, respectively, as follows.

Definition 1 (RDF graph). We define an RDF graph for the RDF
database D as GD ¼ ðVD; ED; LDÞ, where VD is a set of vertices
corresponding to the subjects and objects of all triples in D
(VD # ðU [LÞ), ED is a set of directed edges corresponding to all
triples that are from the subjects to the objects, and LD is an edge-
label mapping, LD : ED ! PD, such that tðs; p; oÞ 2 D; LDðs; oÞ ¼ p.

The vertices in an RDF graph correspond to URIs or literals. It
should be noted that URIs or literals are not considered vertex
labels; rather, they are unique identifiers for vertices.

Definition 2 (Query graph). A query graph for a SPARQL query Q is
defined as GQ ¼ ðVQ ; EQ ; LQ Þ, where VQ is a set of vertices corre-
sponding to the subjects and objects of all triple patterns in Q
(VQ # ðU [L [VARÞ), EQ is a set of directed edges corresponding to
all triples that are from the subjects to the objects, and LQ is an edge-
label mapping, LQ : EQ ! PD, such that tpðs; p; oÞ 2 Q ; LQ ðs; oÞ ¼ p.
As in the RDF graph, the vertices in the query graph are identi-
fied by the variable names, URIs or literals. Therefore, both GD and
GQ are edge-labeled directed graphs. Figs. 1a and 1c show a SPARQL
query graph and an RDF graph, respectively.

The evaluation of a SPARQL query consists of finding all possible
variable bindings that satisfy the given query patterns. For the
SPARQL query Q, substitution h is a mapping VQ \ VAR! ðU [LÞ.
hðGQ Þ is a graph whose variables are substituted by h. The answer
set for a SPARQL query is defined as follows.

Definition 3 (SPARQL query answer). The answer set for the
SPARQL query Q w.r.t RDF database D is AnsðQÞ ¼ fhjhðGQ Þ is a
subgraph of GDg. For v 2 VQ ;AnsðQ ;vÞ denotes the projection of
AnsðQÞ over v ;AnsðQ ;vÞ ¼ fhðvÞjh 2 AnsðQÞg, where hðvÞ is the
projection of mapping h over v.
Example 1 (SPARQL query answer). For the RDF graph in Fig. 1c, the
answer set of the SPARQL query in Fig. 1a is AnsðQÞ ¼ fð?v1 ! v1;

?v2 ! v2; ?v3 ! v3; ?v4 ! v4; ?v5 ! v5Þg. Furthermore, the projec-
tion over ?v1 of AnsðQÞ is AnsðQ ; ?v1Þ ¼ fv1g.
3.2. Candidate vertex set

Irrelevant triples are filtered using the candidate vertex set con-
cept. The candidate vertex set for a query vertex is a subset of the
data vertices that could be included in the final results. The triple fil-
tering is intended to remove irrelevant triples that are not included
in the candidate vertex set, which can be defined as the neighbor-
hood structural information of the query graph. We can define the
candidate vertex set in various ways provided that it can be guaran-
teed that it is included in the final results. In this paper, we define the
candidate vertex set using the neighbor subgraph information. We
define the k-neighborhood subgraph as follows.

Definition 4 (k-neighborhood subgraph). Given a vertex v in a
graph G, the k-neighborhood subgraph, denoted by Nðv ; kÞ, is a set
of subgraphs that contain v and whose size is no more than k.

The k-neighborhood subgraph is applied to both the RDF graph
and the query graphs. For example, Fig. 3 shows Nð?v3;3Þ of the
query graph in Fig. 1c.

We define the candidate vertex set using the subgraph patterns
as follows.

Definition 5 (Candidate vertex set). Given a vertex v in a query
graph GQ and maxL, the candidate vertex set using the subgraph
patterns, denoted by CVðv ;maxLÞ, is a set of data vertices whose k-
neighborhood subgraphs are the same as Nðv ;maxLÞ.
4. RG-index

In this section, we present the design of RG-index, and we also
discuss its physical structure.

4600 K. Kim et al. / Expert Systems with Applications 41 (2014) 4596–4607
4.1. Design of RG-index

RG-index is designed to provide the direct access to the filter
data for the triple filtering. It maintains a set of vertex lists
for subgraph patterns in the RDF database. A vertex list is built
for every vertex of a graph pattern, and contains vertex IDs
matching its query vertex. A vertex list is formally defined as
follows.

RG-index indexes graph patterns in the RDF database. Only
graph patterns whose vertices are all variables and the edge labels
are all bounded, that is, not variable, are considered. We define the
graph patterns as follows.

Definition 6 (Graph pattern). A graph pattern is a connected graph
whose vertices are all variables and the labels of edges are all URIs.

It should be noted that a graph pattern can be viewed as a SPAR-
QL query gp whose triple patterns satisfy the conditions:
8tpðs; p; oÞ 2 gp; s 2 VAR ^ o 2 VAR ^ p 2 PD. The vertex lists for a
graph pattern are formally defined as follows.

Definition 7 (Vertex list). Given a graph pattern GðV ; E; LÞ and a
vertex v 2 V , a vertex list VlistðG; vÞ is AnsðG;vÞ, the projection over
v for the answer set of G. A set of all vertex lists for G is denoted by
VSðGÞ ¼ fVlistðv ;GÞj8v 2 Vg

In this definition, we treat a graph pattern as a query graph and
use AnsðG;vÞ to define the vertex list. RG-index is defined as
follows.

Definition 8 (RG-index). RG-index for RDF database D with the
maximum length maxL is a set of pairs hG;VSðGÞi, where G is a
graph pattern in D whose size is less than or equal to maxL.
Example 2 (RG-index). Fig. 4 shows an example of RG-index for
the RDF graph in Fig. 1c. This RG-index indexes five graph patterns
for the RDF graph and has fourteen Vlists.

Using RG-index, the candidate vertex sets for each vertex of the
query graph can be obtained. The candidate vertex sets are ob-
tained by intersecting relevant Vlists.
Fig. 4. RG-index (maxL ¼ 3).
Lemma 1 (Candidate vertex set). Given a vertex v in a query graph
GQ and maxL, we can obtain a superset of CVðv ;maxLÞ by intersecting
Vlists for k-neighborhood subgraphs of v.

\
gp2Nðv;maxLÞ

Vlistðgp;vÞ# CVðv;maxLÞ ð1Þ
Proof. By the definition of the k-neighborhood subgraph and its
Vlists, for all v in gp; Vlistðgp;vÞ# CVðv ;maxLÞ. Therefore,T

gp2Nðv ;maxLÞVlistðgp;vÞ# CVðv ;maxLÞ. h
4.2. Physical structure of RG-index

In this section, we discuss the physical structure of the RG-
index. First, we describe how the graph patterns are represented
in the RG-index. Then, we explain the storage of the RG-index.

4.2.1. DFS code representation
We use the minimal DFS code proposed for gSpan (Yan & Han,

2002) as the canonical representation of graph patterns. The min-
imal DFS code for a graph pattern gp is defined as follows. First, all
nodes in gp are given DFS subscripts while they are traversed by a
depth-first search. If two nodes are subscripted as v i and v j, and
i < j, then v i is traversed before v j. It should be noted that, for a
graph pattern gp, many different subscripts can be made, because
there can exist several DFS trees for gp.

By using this subscription, each edge in gp is represented by a
DFS edge. Originally, gSpan was designed to treat undirected
graphs (Yan & Han, 2002), and DFS edge representation for
undirected graphs was proposed. However, we are treating direc-
ted edge-labeled graphs. Therefore, the edge representation
hi; j; lði;jÞ; dði;jÞi, where i and j are DFS subscripts, lði;jÞ is the edge label,
and dði;jÞ is the edge direction, is used. If the edge is from v i to
v j; dði;jÞ ¼ !; otherwise, dði;jÞ ¼ . A DFS edge with i < j is called a
forward edge, and a DFS edge with i > j is called a backward edge.
Forward edges are edges that are visited during the DFS search, and
edges that are not visited become backward edges.

Using this DFS subscription and the DFS edge representation, a
graph pattern can be mapped into a DFS code, which is a sequence
of DFS edges. In the DFS code, DFS edges for edges of the graph pat-
terns are sequenced as follows. Forward edges are ordered as they
are discovered. Given a vertex v, all of its backward edges should
appear after the forward edge pointing to v. Among the backward
edges from the same vertex, say ðv i;v jÞ; ðv i;vkÞ, if j < k, then ðv i;v jÞ
should appear before ðv i; vkÞ. gSpan defines a lexicographic order
among DFS codes (Yan & Han, 2002). For two given DFS edges,
the order is determined first by their two subscripts, then by edge
labels, and finally by directions. We define the order between
directions such that! is smaller that . gSpan defines the canon-
ical label of gp as its lexicographically minimum DFS code.

Example 3 (DFS code). Fig. 5 shows a graph pattern (Fig. 5 (a)) and
its three DFS subscriptions (Fig. 5 (b)–(d)). Each vertex is annotated
by its subscription. Forward edges are represented by thick edges,
while backward edges are represented by thin edges. Table 1
shows the DFS codes for three subscriptions. The order among the
DFS codes is (d) < (c) < (d); (d) is the minimum DFS code for the
graph pattern.
4.2.2. Storage of RG-index
Each vertex in the RDF database is assigned a four-byte integer

ID. Physically, Vlists are stored as the sorted lists of these vertex
IDs. Vlists are stored in a disk as sorted by vertex IDs so that the

Fig. 5. DFS subscriptions.

Table 1
DFS codes of the graph pattern in Fig. 5(a).

Edge (b) (c) (d)

1 h0;1; p3;!i h0;1;p1; i h0;1;p1;!i
2 h1;2; p2;!i h1;2; p2; i h0;2;p2; i
3 h1;4; p4; i h1;4; p5;!i h0;4;p5;!i
4 h2;3; p1;!i h2;3; p3; i h2;3;p3; i
5 h2;4; p5;!i h2;4; p4; i h2;4;p4; i

K. Kim et al. / Expert Systems with Applications 41 (2014) 4596–4607 4601
Vlist can be read from the disk as sorted. The reason for storing
Vlists as sorted is to allow the filter data to be obtained by simply
merging the relevant Vlists. Another benefit of sorting is that
sorted Vlists can be compressed by the delta-based byte-level
compression scheme similarly to compressed triples in RDF-3X
(Neumann & Weikum, 2008). The delta between two vertex IDs
is encoded with one header byte and the minimum number of
bytes for the delta (1 byte � 4 bytes). If the delta is smaller than
128, it is stored directly in the header byte, consuming only one
byte. Otherwise, the header byte stores the byte length of the
delta with its most significant bit set as 1 to indicate the delta
is not small. This compression scheme alleviates the overall size
overhead of Vlists and reduces disk I/O overhead for reading
the Vlists.

The DFS codes of the graph patterns in RG-index are organized
in a trie (or prefix tree) data structure. Each node in level l in the
trie has a pointer to the Vlist for its associated length-l DFS code.
The trie provides compact storage for the DFS codes, because the
duplicated parts of the DFS codes can be shared. In addition, it pro-
vides an efficient way to access the Vlist for a given DFS code. The
location in the disk of the Vlist for a graph pattern can be found by
traversing the trie using the DFS code. The number of the nodes in
the trie is equal to the number of the DFS codes in RG-index. For
real-life datasets and a small maxL value, the trie is relatively small
and can be resident in the main memory.
4.3. Handling the size problem of RG-index

Even if the graph patterns are limited to size maxL, it is still
infeasible to index all possible subgraph patterns in the RDF
database D, due to the exponential number of the possible graph
patterns. Because the RG-index is designed to provide the filter
data for the triple filtering, it does not have to index all possible
graph patterns in D. Instead, by choosing and indexing only graph
patterns with effective filtering power, its size can be reduced
while its filtering power is retained. We discuss how to choose
the graph patterns in Section 4.3.1.

In addition, there exist some graph patterns that need not be
indexed, and redundant Vlists. We also discuss the handling of
these redundant graph patterns and Vlists in this section.
4.3.1. Discriminative patterns
The first criterion is to store only Vlists with enough filtering

power as compared to other replaceable Vlists. If Vlisti � Vlistj;

Vlisti can be used in place of Vlistj, because Vlisti has all vertices
in Vlistj. Therefore, it is possible to store only Vlisti and remove
Vlistj from RP-index. However, this replacement can degrade the
filtering power because the replacing filter is prone to produce
more false positives than the replaced filter. Therefore, it is impor-
tant to choose graph patterns that do not degrade the filtering
power significantly. A discriminative Vlist is one whose Vlist can-
not be replaced by another Vlist without significantly degrading
the filtering power. We define the discriminative Vlist as follows.

Definition 9 (Discriminative Vlist). Given discriminative ratio c
ð0 < c 6 1Þ and a set of Vlists V ;v list is discriminative w.r.t V iff
8v lists 2 V ^ v lists 2 vlist, jv listj < c� jv listsj.
Example 4 (Discriminative Vlist). Let us assume that there exists
two Vlists in V ¼ fv list1;v list2g;v list1 ¼ fv1;v2g and v list2 ¼ fv1;

v2;v3;v4g. v list1 is included in v list2 and jv list1j=jvlist2j ¼ 0:5. There-
fore, if c > 0:5 v list2 is discriminative, otherwise it is not
discriminative.
4.3.2. Frequent patterns
The second criterion is to store only frequent graph paths. A

graph path is frequent iff its support is larger than the minimum
threshold defined by the user. Infrequent graph paths are unlikely
to be useful, because they are rare in RDF graphs and would not be
queried frequently. Therefore, their removal from RG-index does
not degrade the overall performance for most queries. Additionally,
because infrequent graph patterns tend to be abundant, their re-
moval can reduce the size of RG-index significantly. Since the num-
ber of patterns increases with their size, a size-increasing function
is used to provide the threshold value for identifying frequent
graph patterns. Thus, the overall index size can be reduced. We
define a frequent graph pattern as follows.

Definition 10 (Frequent Graph Pattern). Given size-increasing
function wðlÞ, a graph pattern G is frequent if and only if
supðGÞP wðjGjÞ.
Example 5 (Frequent Graph Pattern). Let us assume that maxL is 10
and the frequency threshold function is wðlÞ ¼ ððl� 1Þ=
maxLÞ2 � 100, which we use in the experiments. Also assume that
there exists a Vlist whose size if 100 and whose graph pattern is
size-5. Then, the Vlist is frequent because its size is larger than
wð5Þ ¼ 16.
5. Building RG-index

We build RG-index using the subgraph mining algorithm,
gSpan, which was originally proposed for use in the transactional
setting. In this section, we briefly review gSpan, and discuss how
to adapt it in order to build the RG-index for the single large RDF
graph.

5.1. RDF graph pattern mining using gSpan

We adapt the gSpan algorithm to mine frequent graph patterns
in the RDF graph in order to build the RG-index. The modifications
are (1) the support definition, (2) the restriction for the pattern
generation, and (3) caching the intermediate results.

4602 K. Kim et al. / Expert Systems with Applications 41 (2014) 4596–4607
5.1.1. Support for the RDF graph
First, in order to apply the frequent pattern mining algorithm

for the RDF graph, we need to measure the support of the gener-
ated patterns. gSpan was proposed for use in the context of the
transactional setting, and the support for the transactional setting
is easily defined as the number of graphs in the database matched
for a graph pattern. This definition has the anti-monotonicity prop-
erty, which is essential for efficient mining. However, it is not easy
to define the support that satisfies this property in the single large
graph setting (Kuramochi & Karypis, 2004). Several support defini-
tions for the single large graph setting have been proposed. We use
the definition of graph pattern frequency in Bringmann and Nijssen
(2008).

Definition 11 (Support of graph pattern). Given a graph pattern
GðV ; E; LÞ, the support of G is supðGÞ ¼minv2V ðjVlistðG;vÞjÞ.

This definition uses the minimum number of vertices of the
graph pattern as the support, and is computationally efficient as
compared to other support definitions for the single graph (Fiedler
& Borgelt, 2007). In addition, it ensures the anti-monotonicity of
the support. Using this support, only the size of Vlists for the graph
pattern is required.

5.1.2. Avoiding redundant patterns
We restrict the pattern generation of gSpan such that it does not

generate all possible patterns in the RDF graph. There exist graph
patterns that become redundant due to the semantics of SPARQL.
In fact, evaluating the basic graph patterns of SPARQL queries is
not exactly the same as subgraph isomorphism. This is because
pattern mapping is not bijective; that is, the different vertices in
a query graph can be matched to a same vertex in the RDF graph.
Let us take a look at the example in Fig. 6. In this figure, there
are an RDF graph and three graph patterns: G1;G2, and G3. These
three graph patterns are all matched to the RDF graph, although
G2 and G3 have more edges than the RDF graph. v2 in the RDF
graph is matched to several vertices in these patterns; i.e., ?v2

and ?v3 in G2 are matched to v2. Therefore, the Vlists for these ver-
tices are identical; VlistðG1; ?v2Þ ¼ VlistðG2; ?v2Þ ¼ VlistðG2; ?v3Þ ¼
VlistðG3; ?v2Þ ¼ VlistðG3; ?v3Þ ¼ VlistðG3; ?v4Þ ¼ fv2g. G2 and G3 are
redundant because they have the same filtering power as G1.

Formally, graph patterns having non-trivial automorphisms are
redundant.

Lemma 2. If a graph pattern G has a non-trivial automorphism h,
then 8v 2 G ^ hðvÞ – v ; s:t:VlistðG;vÞ ¼ VlistðG; hðvÞÞ, where hðvÞ is
the matching vertex by h.
Fig. 7. Non-redundan

Fig. 6. Redundant graph pattern.
Proof. By the definition of the non-trivial automorphism, if G is a
non-trivial automorphism h and v 0 ¼ hðvÞ, then Nðv ;maxLÞ ¼
Nðv 0;maxLÞ. Therefore, we can conclude that VlistðG;vÞ ¼
VlistðG; hðvÞÞ. h

In this case, G has the same Vlists as the maximum subgraph of
G, which does not have a non-trivial automorphism. Therefore, it is
not necessary to generate graph patterns having non-trivial
automorphisms.

In order not to generate graph patterns having automorphisms,
automorphism checking should be performed for each generated
graph pattern that is known to be NP-complete. Since this is too
costly, we take an approximate approach instead. Patterns whose
vertices have edges of the same type, i.e., edges with the same label
and the same direction, are not generated. However, this method
can remove graph patterns that are not redundant. For example,
the graph pattern in Fig. 7 is removed because v1 has two edges
of the same type. However, it does not have non-trivial automor-
phism. Although the exclusion of these types of patterns can
degrade the filtering power of the RG-index, in order to achieve
efficient construction, these patterns are not considered.
5.1.3. Caching the intermediate results
The support of each generated pattern should be calculated and

Vlists built for it. However, this process is very time-consuming be-
cause it requires finding all occurrences of the pattern in the RDF
graph. The easiest way to perform this is to make and execute a
SPARQL query for the generated pattern. However, this incurs
many duplicate computations. Let us take a look at the example
in Fig. 8. This figure illustrates a forward extension in which G1 is
extended to G2. If the occurrences of these two patterns are calcu-
lated separately using two SPARQL queries generated for them, the
subgraph of G2, which corresponds to G1, is calculated twice. This is
because G2 contains G1.

In order to reduce these redundant computations, we propose
caching the occurrences of a graph pattern and reusing them for
Fig. 8. Rightmost extension.

t graph pattern.

Fig. 9. Backward extension using the results of the forward extension.

K. Kim et al. / Expert Systems with Applications 41 (2014) 4596–4607 4603
its child graph patterns. Fig. 8 shows the entire process. The occur-
rences of the graph pattern are stored as a table whose columns
correspond to each vertex in the graph pattern. Then, the occur-
rences of the child patterns can be obtained by a join operation
for the table. In this example, the table G1, which contains the
occurrence results of G1, is joined with the triple whose predicate
is p4, and the results become the occurrences of G2.

In general, for a forward extension, the results can be obtained
as

G2 ¼
G1fflv i¼S DðpÞ if add hv i;v j; p; i
G1fflv i¼O DðpÞ if add hv i;v j; p;!i

(
ð2Þ

For a backward extension, the results are calculated as

G2 ¼
rv j¼O G1fflv i¼S DðpÞ

� �
if add hv i;v j; p; i

rv j¼O G1fflv i¼O DðpÞ
� �

if add hv i;v j; p;!i

(
ð3Þ

For a backward extension, a selection operation is needed in
addition to the join operation. The results of a backward extension
can be obtained from the selection operation for the results of a
forward extension. Fig. 9 shows an example of the rightmost
extension for the rightmost vertex, ?v3. First, the results of the for-
ward extension are calculated. Then, if the extension is for the
rightmost vertex, it can be used for the backward extension (the
backward extension is possible only for the rightmost vertex). If
the backward extension is to add h3;1; p4i, then the results can
be obtained by performing the selection operation with the condi-
tion ?v4 ¼ ?v1 for the results of the forward extension. This is effi-
cient, because only the selection operation is required, and the
results of the forward extension are reused.

It should be noted that the depth-first fashion of gSpan makes
this approach more attractive, because it exploits the parent’s re-
sults for its children. The results can be stored in table-form in
the main-memory. If their size is too great to store in the main-
memory, they can be saved on disk. The number of results set to
be kept is bounded as maxL.

Algorithm 1. gSpanRDF (s, D, minSup, RGindex)

Input: an RDF database D and minSup
1: n jV j;
2: /⁄ rightmost extension ⁄/
3: for all v 2 the rightmost path of s do
4: for all p 2 P and d 2 f ;!g do
5: /⁄ forward extension ⁄/
6: e hv ;vnþ1; p; di
7: if s}re is not minimal then
8: continue;
9: end if
10: G0 getOccurrenceForwardðG; p; eÞ;
11: if s}r e is frequent and discriminative then
⇑ (continued)

Algorithm 1. gSpanRDF (s, D, minSup, RGindex)

12: Insert into RGindex
13: end if
14: if v is the rightmost vertex then
15: /⁄ backward extension ⁄/
16: for all v j 2 V ^ v j – v do
17: eb hv ;v j; p; di
18: if s}r eb is not minimal then
19: continue;
20: end if
21: Gb getOccurrenceBackwardðG0; p; eÞ;
22: if s}r e is frequent and discriminative then
23: Insert into RGindex
24: end if
25: end for
26: end if
27: end for
28: end for
29: return

Algorithm 1 shows the overall process of building RG-index. The

function gSpanRDF is called recursively to generate graph patterns
from 1-size to maxL-size. It adds an edge to the input DFS code.
First, it performs the forward extension for every vertex in the
rightmost path. It adds edges, varying the label with the predicates
in the RDF database and its direction. Then, it checks that the gen-
erated DFS code is the minimal DFS code of its corresponding graph
pattern. If not, the DFS code is pruned. Then, it calculates the occur-
rences of the graph patterns using Eq. (2). If the graph pattern is
frequent and discriminative, the pattern and Vlists are inserted
into the RG-index. Then, if the extension is for the rightmost ver-
tex, it performs the backward extension. The edge for the back-
ward extension is from the rightmost vertex and to the other
vertex in the graph pattern. The DFS code should be also checked
as to whether it is minimal. Then, the occurrences of the DFS code
are calculated by performing the selection operation for the results
of the forward extension, as previously explained.

6. Triple filtering using RG-index

In this section, we describe how the triple filtering is processed.
First, we introduce the RFLT operator, which is the relational oper-
ator for performing the triple filtering, and then explain how to
incorporate the query optimizer to make execution plans using
RFLT operators.

6.1. RFLT operator

The RFLT operator is a relational operator that conducts the tri-
ple filtering. RFLT operators are added to an execution plan as a

4604 K. Kim et al. / Expert Systems with Applications 41 (2014) 4596–4607
parent operator of the scan operators. It filters out irrelevant triples
retrieved from its child scan operators using the Vlists of RG-index,
which are assigned by the query optimizer. It checks whether the
subjects or objects of the input triples are included in the candidate
vertex set for the corresponding query vertex, which are obtained
from the intersection of the assigned Vlists.

The triple filtering is conducted using the merge process for the
input triples and the assigned Vlists. We assume that the input tri-
ples are sorted according to their subjects or objects. This assump-
tion is satisfied in many RDF stores because they store triples
sorted in order to allow efficient retrieval of the matching triples
and to use merge joins to combine them. We call the vertex corre-
sponding to the subjects or objects by which the triples are sorted
the sortkey of the scan operator. Because the Vlists are stored as
sorted in the RG-index and the input triples are also sorted, the tri-
ple filtering can be performed by simply merging the Vlists and in-
put triples; the triples not matched to Vlists are filtered out. This
requires only the sequential reading of Vlists and input triples,
and therefore, the triple filtering can be performed very efficiently.

An RFLT operator can perform triple filtering for multiple scan
operators with the same sortkey. By making the RFLT operator per-
form the triple filtering for several scan operators, redundant pro-
cessing of triple filtering can be reduced. In addition, because they
have the same sortkey, their outputs should be joined; the sortkey
becomes also the join variable. It can be also processed by the
merge join because the input triples are all sorted. Hence, we de-
sign the RFLT operator to process merge join operations and triple
filtering simultaneously.
6.2. Generating an execution plan with RFLT operators

Many RDF stores use a cost-based query optimizer to find opti-
mal (or near-optimal) plans for SPARQL queries (Neumann & Wei-
kum, 2008). In order to make plans that use RFLT operators, we
need to provide the query optimizer with (1) its cost function,
and (2) the estimation method for the output cardinalities.
6.2.1. Cost function of the RFLT operator
First, we discuss the cost function of the RFLT operator. The

RFLT performs only the merge process for its inputs, i.e., Vlists
and input triples. Therefore, its cost is linear with respect to its in-
put size, as follows.

I=O cost : O
X
g2GS

kVlistðg; vÞk
 !

ð4Þ

CPU cost : O
X

scan2ChildOP

jscanj þ
X
g2GS

jVlistðg;vÞj
 !

ð5Þ

where kv listk is the number of blocks of v list, GS is the set of as-
signed graph patterns, ChildOP is the set of child scan operators,
and jscanj is the cardinality of the scan operator.
1
http://code.google.com/p/rdf3x/.
6.2.2. Output cardinality estimation of the RFLT operator
The output cardinality of an RFLT operator is estimated as

follows.
First, it is assumed that the following statistics are available: (1)

The cardinalities of scan operators, i.e., the number of triples
matching triple patterns; (2) the number of distinct values of the
sortkey column; and (3) the number of vertices in a Vlist. These
statistics are already available from indices in RDF-3X and the
RP-index.

We first consider the RFLT operator having one scan operator.
The set of distinct values for the sortkey column of the scan oper-
ator is denoted by S. The intersection of S and Vlists of the RFLT is
denoted by C ¼ \g2GSVlistðg;vÞ. Then, the output cardinality of the
RFLT operator can be estimated as

jRFLTj ¼ jScanj � C
S

ð6Þ

If the RFLT has several child scan operators, it performs not only
the triple filtering but also the join operation for all child operators.
Let us denote the intersection of the sortkey columns for child
operators and Vlists of the RFLT by J ¼

T
child2RFLT:childsjchildj \ C.

Then, the output cardinality of the RFLT operator can be estimated
as

jRFLTj ¼ jJj �
Y

scan2Childs

jscanj
S

ð7Þ

Briefly, the output cardinality of an RFLT operator is estimated
using (1) the assumption of a uniform distribution for the values
of the sortkey column, and (2) the estimation of the sortkey col-
umn values remaining after triple filtering, that is, the intersection
size of the values of the sortkey column and Vlists.

Our method is very similar to the Characteristic Set (Neumann
& Moerkotte, 2011), which was proposed for estimating the cardi-
nalities of star-join queries. However, our method does not aim to
replace the Characteristic Set, but rather to reflect the filtering ef-
fect in the cardinality estimation. We expect that exploiting the
Characteristic Set in our estimation method will improve the esti-
mation accuracy. Therefore, our method and the Characteristic Set
have a complementary relationship.

6.2.3. Adding RFLT operators
We use the query optimization of RDF-3X, which is based on the

bottom-up dynamic-programming (DP) framework (Neumann &
Weikum, 2008). The query compiler maintains the DP table, in
which the optimal plans for the subproblems of the query are
stored. First, the optimizer seeds its DP table with scan operators
for the triple patterns as solutions of the 1-size subproblems. For
each scan operator created in the seeding phase, an RFLT operator
is added as its parent operator. The query optimizer should assign
to RFLT operators the Vlists for the triple filtering. It assigns to an
RFLT operator the Vlists for the graph patterns, which are k-neigh-
borhood subgraphs of the query graph for the sortkey of the child
scan operators. However, it is not necessary to assign all k-neigh-
borhood subgraphs. If there are two subgraphs, s:t. gi � gj;

Vlistsðgi;vÞ does not need to be assigned because Vlistsðgj;vÞ �
Vlistsðgi;vÞ. For an RFLT operator, RFLT:Vlist ¼ fVlistðg; vÞjg 2
Nðv ;maxLÞ ^ 9= g0 2 Nðv;maxLÞ s:t: g � g0g.

Larger plans are then created by joining two plans from smaller
problems. After making the join operator for two smaller problems,
if the join is a merge join, the operator is converted into an RFLT
operator and the child operators of the join operator become the
child operator of one RFLT operator.
7. Experimental results

We implemented R3F on top of the open-source RDF-3X system
(version 0.3.6).1 R3F was written in C++ and compiled with g++ with
the -O3 flag for the experiments. Our implementation included the
RFLT operator, extension of the query optimizer, and the RP-index
builder.

All the experiments were conducted on a hardware platform
with eight 3.0 GHz Intel Xeon processors, 16 GB of memory, and
running the 64-bit 2.6.31-23 Linux Kernel. We conducted the
experiments using three datasets: Lehigh University Benchmark
(LUBM) (Guo, Pan, & Heflin, 2005), Yet Another Great Ontology 2

http://code.google.com/p/rdf3x/

Table 2
Statistics about datasets.

Predicates URIs Literals Triples (millions) RDF-3X size (GB)

LUBM 18 217,006,887 111,613,881 1335 77
YAGO2 93 6,872,931 22,452,390 37 9
SP2B 77 267,134,673 523,228,402 1399 123

 0

 200

 400

 600

 800

 1000

3 4 5 6 7

Si
ze

 (M
B)

maxL

 700

 800

 900

 1000

 1100

 1200

1 0.9 0.8 0.7 0.6
Si

ze
 (M

B)
discriminative ratio

 0
 200
 400
 600
 800

 1000
 1200
 1400

10000 20000 30000 40000 50000

Si
ze

 (M
B)

Frequence (n)

Fig. 10. RG-index size (YAGO2).

K. Kim et al. / Expert Systems with Applications 41 (2014) 4596–4607 4605
(YAGO2) (Hoffart et al., 2013), and SPARQL Performance Bench-
mark (SP2B) (Schmidt, Hornung, Lausen, & Pinkel, 2009). LUBM is
a benchmark dataset whose domain is the university, YAGO2 is a
knowledge-base derived from Wikipedia,2 WordNet (Fellbaum,
1998), and GeoNames,3 and SP2B is a benchmark that simulates
the DBLP scenario.4

The benchmark datasets (LUBM and SP2B) have their own scale
factors. We generated 10,000 universities for LUBM, and 96 GB tri-
ples for SP2B. These datasets have different characteristics, as
shown in Table 2.
Table 3
Index statistics.

Size Number of patterns Number of Vlists

(a) YAGO2
RP-filter 341 MB 486,508 486,508
RG-index 1.1G 82,534 416,497

(b) LUBM
RP-filter 1.4G 77 77
7.1. RG-index size

In this section, we present the experimental results for the size
of RG-index. We built several RG-indices for SP2B varying maxL, c
(the discriminative ratio), and w (the frequency function). We used
wðlÞ ¼ ðl� 1Þ=maxLð Þ2 � n, which is the size-increasing function (l
is the size of the graph pattern and n is determined properly for
each dataset). We excluded some predicates for which there ex-
isted a large number of triples in order to reduce the overhead of
building RG-index.

Fig. 10 shows the effects of three parameters: maxL; c, and w
(actually n in the function) for the size of RG-index of YAGO2 data-
set. As can be seen in this figure, the size of the RG-index grows
exponentially for the size of the graph patterns. However, we can
adjust the size adequately using the two parameters, c and w, for
our purpose. Also, note that the size of the RG-index with adequate
c and w value is small as compared to that of the RDF database. We
describe the effects of the parameters for the query performance in
the next section.
RG-index 2.4G 118 590

(c) SP2B
RP-filter 1.3G 68,277 68,277
RG-index 1.3G 32,436 149,812

Table 4
Query Statistics.

Group A B C D Total
7.2. Query evaluation performance

In this section, we present the effects of the RG-index for the
query evaluation performance. First, we compare the query evalu-
ation performances of RDF-3X, RP-filter, and RG-index. We built
RG-indices and RP-filters for the three datasets. RP-filters index
all incoming path patterns whose length is up to 7 (i.e.,
maxL ¼ 7). We used the same maxL for RG-indices. We use
c ¼ 0:7 and wðlÞ ¼ ðl� 1Þ=maxLð Þ2 � n, where n is determined for
2
http://www.wikipedia.org.

3
http://www.geonames.org.

4
http://www.informatik.uni-trier.de/ley/db/.

Execution Time (ms) 0 � 10 10 � 100 100 � 1000 1000�

Count (YAGO2) 638 126 12 0 1913
Count (LUBM) 0 5 15 51 71
Count (SP2B) 178 203 189 7 577
each dataset to adjust the index size. Table 3 shows the statistics of
RG-indices and RP-filters.

Because we remove some graph patterns by using the discrim-
inative ratio and the frequency, RG-indices index fewer patterns
than RP-filter. However, the number of Vlists in RG-index is larger
than the number of graph patterns because a single graph pattern
can have several Vlists.

In order to measure the query performance, we extracted graph
patterns from each dataset and used them as the test queries. Ta-
ble 4 shows the test query statistics. In this table, the queries are
divided according to their execution times in RDF-3X. YAGO2 has
many queries with short execution times because it is small and
has many predicates. However, LUBM has a small number of pred-
icates and a large number of triples. Therefore, its queries take a
long time to evaluate. SP2B has intermediate characteristics
between YAGO2 and LUBM.

Table 5 shows the averaged execution times. Both RP-filter and
RG-index improve the query performance by more than about
30%. In addition, it can be seen that RG-index is more effective
than RP-filter for YAGO2 and SP2B. In LUBM, RP-filter and

http://www.wikipedia.org
http://www.geonames.org
http://www.informatik.uni-trier.de/ley/db/

Table 5
Query Execution Time (ms).

Group A B C D Total

(a) YAGO2
RDF-3X 5.09 28.19 122.5 N/A 21.08
RP-filter 4.22 (17%) 19.38 (31%) 59.91 (51%) N/A 14.58 (30%)
RG-index 3.56 (30%) 14.86 (47%) 43.58 (64%) N/A 11.27 (46%)

(b) LUBM
RDF-3X N/A 53 540.8 134,490 114,385
RP-filter N/A 50 (5%) 479.6 (11%) 90,290 (32%) 76,808 (32%)
RG-index N/A 50 (5%) 477.2 (11%) 89,587 (33%) 76,209 (33%)

(c) SP2B
RDF-3X 2.65 31.94 238.47 1361.42 106.68
RP-filter 2.37 (10%) 25.78 (19%) 168.19 (29%) 547.28 (59%) 71.53 (32%)
RG-index 2.32 (12%) 16.19 (49%) 103.60 (56%) 99.14 (92%) 41.55 (61%)

 0

 20

 40

 60

 80

 100

3 4 5 6 7

Ex
ec

ut
io

n
Ti

m
e

(m
s)

maxL

 0

 20

 40

 60

 80

 100

0.6 0.7 0.8 0.9 1

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Discriminative Ratio

 0

 20

 40

 60

 80

 100

10000 20000 30000 40000 50000

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Frequency (n)

Fig. 11. Query execution time (YAGO2).

4606 K. Kim et al. / Expert Systems with Applications 41 (2014) 4596–4607
RG-index show similar effects. This is because LUBM has a rela-
tively structured data model, and therefore, there exists a small
amount graph pattern that is effective for triple filtering. In addi-
tion, it should be noted that RG-index is more effective for queries
with longer execution times. This is because the queries with long
execution times have more intermediate results, which RG-index
can reduce effectively.

Next, we measured the query performance varying RG-index
parameters. We used RG-index, which was presented in Section 7.1,
in order to present the effect of the parameters on the size of RG-
index. Fig. 11 shows the results. We can improve the query perfor-
mance by increasing the maxL value. However, the improvement
decreases as the maxL value increases. Therefore, we should choose
an adequate maxL value for the query workload. The discriminative
ratio rarely affects the query performance. This is because the
effective graph patterns remain for the small discriminative ratio.
The frequency affects the query performance. Therefore, we should
adapt the frequency considering the trade-off between the size and
the query performance.

7.3. Discussions

As we can see in the previous section, RG-index can improve the
query performance significantly by reducing the redundant inter-
mediate results. By our observation, RG-index is specially effective
for the queries with a large size of intermediate results. Surely, for
queries with a small size of redundant intermediate results, RG-
index does not improve the query performance much. Although
our approach has apparent strengths, there also exist some issues
to be discussed more.

7.3.1. Determining the parameter values
RG-index has three parameters, maxL; c and wðlÞ. As we can see

in the experimental results, these parameters affect the size of RG-
index and the query evaluation performance. And there exists a
trade-off between these metrics. Therefore it could be somewhat
difficult to determining the values of these parameters. It could re-
quire some experiments and analyzing the characteristics of data-
set. Also, it is also probably possible to automate the decisions
using the statistical information of the data. We leave this issues
for the future work.

7.3.2. Workload-aware index building
RG-index extracts the existing graph patterns in RDF graphs.

However, as mentioned before, due to the size problem we could
not index all existing patterns in RDF-graphs. Rather, we should
limit the maximum size of indexed patterns or adapt several
parameters in order to make the indices affordable to maintain.
However, this approach could limit the performance of the triple
filtering. For example, for the cases that the large size queries are
general, RG-index with small maxL could be ineffective.

In addition, because we do not include infrequent patterns in
the indices with the hypotheses that infrequent patterns are not
liable to be queried, some effective infrequent patterns could be re-
moved eventually. If these patterns are frequently used in the
query workload, it will be better to decide to include this infre-
quent pattern in the index.

Therefore, we need a method which can make RG-index appro-
priate for the current query workload. It would be an interesting
research topic to analyze the SPARQL query load and generate pat-
terns to be indexed regarding the workload.

7.3.3. Accurate output cardinality estimation
The estimation of the output cardinality for each operator in an

execution plan is very crucial for generating of an optimal execu-
tion plan. Actually, we have observed some cases that the query
optimizer of RDF-3X generates non-optimal plans and the query
performance degrades seriously. Therefore it is essential to esti-
mate the output cardinalities to generate an optimal plan.

In addition, RFLT operator which conducts the triple filtering
changes the output cardinalities of the target scan operators.
Although we propose a cardinality estimation method for RFLT

K. Kim et al. / Expert Systems with Applications 41 (2014) 4596–4607 4607
operator, it has a limitation that it assumes the uniform distribu-
tion. We also observed some cases that the assumption does not
hold, and therefore the estimation results are very poor. In our esti-
mation method, we use the set intersection calculation. Although
we use the upper bound for estimating the set intersection, there
are other set intersection estimation methods. We can also apply
other set intersection methods in order to make the cardinality
estimation more accurate.

8. Conclusions and future work

In this paper, we proposed the RG-index, which we designed to
improve the filtering power of the triple filtering method, RP-filter.
The RG-index indexes the graph patterns in the RDF graph, and
therefore, it can improve the query performance more than a triple
filtering method that uses a path-based index. In order to address
the size problem of the RG-index, we proposed indexing only the
discriminative and frequent patterns. In addition, we proposed
an efficient algorithm for building the RG-index, which is an adap-
tation of the frequent graph pattern mining algorithm, gSpan.

In our future studies, we plan to build RG-index considering the
query workload. As already mentioned, to solving the size problem
of RG-index, we should choose the patterns to be indexed. If we
could consider the query workload for choosing the patterns, we
expect that the filtering effects could be enhanced.

Also we need more accurate estimation method of the output
cardinality. Actually, we have observed some cases that the query
performance degrades seriously due to the non-optimal plans.
Therefore it is essential to estimate the output cardinalities more
accurately to generate an optimal plan.

Finally, as the big data emerges, the parallel distribution frame-
work like MapReduce is used extensively for data processing. There
exist already several methods for processing RDF data in these
environments. In this distributed systems, the network transfer
cost is very important factor for the performance. And in the
MapReduce framework, the intermediate results should be materi-
alized in the dist storage for provide query fail-over, handling the
intermediate results is more serious problem. We expect that our
triple filtering method could be very effective and its effect is more
apparent in this environment. However, it requires how to store
the indices and access the index data in the distributed index.
We plan to extend our triple filtering method for the distributed
environments.

Acknowledgement

This work was supported by Samsung Electronics Co. Ltd.

References

Abadi, D. J., Marcus, A., Madden, S., & Hollenbach, K. (2009). SW-Store: A vertically
partitioned DBMS for semantic web data management. VLDB J., 18(2), 385–406.

Belleau, F., Nolin, M.-A., Tourigny, N., Rigault, P., & Morissette, J. (2008). Bio2RDF:
Towards a mashup to build bioinformatics knowledge systems. Journal of
biomedical informatics, 41(5), 706–716.

Bringmann B., & Nijssen S. (2008). What is frequent in a single graph? In Advances in
knowledge discovery and data mining, 12th Pacific-Asia conference, PAKDD 2008
(pp. 858–863).

Bröcheler, M., Pugliese, A., & Subrahmanian, V. S. (2009). DOGMA: A disk-oriented
graph matching algorithm for RDF databases. In Proceedings of the 8th
international semantic web conference (ISWC 2009).

Broekstra, J., Kampman, A., & van Harmelen, F. (2002). Sesame: A generic
architecture for storing and querying RDF and RDF Schema. In Proceedings of
the first international semantic web conference (ISWC 2002).

Carroll, J. J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., & Wilkinson, K.
(2004). Jena: Implementing the semantic web recommendations. In Proceedings
of the 13th international conference on World Wide Web – alternate track papers &
posters (WWW 2004).

Chebotko, A., Lu, S., & Fotouhi, F. (2009). Semantics preserving SPARQL-to-SQL
translation. Data Knowledge and Engineering, 68(10), 973–1000.
Cheng, H., Yan, X., & Han, J. (2010). Mining graph patterns. In C. C. Aggarwal & H.
Wang (Eds.), Managing and mining graph data. Advances in database systems (Vol.
40, pp. 365–392). Springer.

Chong, E. I., Das, S., Eadon, G., & Srinivasan, J. (2005). An efficient SQL-based RDF
querying scheme. In Proceedings of the 31st international conference on very large
data bases (VLDB 2005). ACM.

Fellbaum, C. (Ed.). (1998). WordNet: An electronic lexical database. The MIT Press.
Fiedler, M., & Borgelt, C. (2007). Subgraph support in a single large graph. In

Workshops proceedings of the 7th IEEE international conference on data mining
(ICDM 2007).

Guo, Y., Pan, Z., & Heflin, J. (2005). LUBM: A benchmark for OWL knowledge base
systems. Journal of Web Semantics, 3(2-3), 158–182.

He, H., & Singh, A. K. (2008). Graphs-at-a-time: Query language and access methods
for graph databases. In Proceedings of the ACM SIGMOD international conference
on management of data (SIGMOD 2008).

Hoffart, J., Suchanek, F. M., Berberich, K., & Weikum, G. (2013). YAGO2: A spatially
and temporally enhanced knowledge base from Wikipedia. Artificial Intelligence,
194, 28–61.

Huang, J., Abadi, D. J., & Ren, K. (2011). Scalable SPARQL querying of large RDF
graphs. PVLDB, 4(11), 1123–1134.

Husain, M., McGlothlin, J. P., Masud, M., Khan, L., & Thuraisingham, B. (2011).
Heuristics-based query processing for large RDF graphs using cloud computing.
IEEE Transactions on Knowledge and Data Engineering, 23(9), 1312–1327.

Kim, K., Moon, B., & Kim, H.- J. (2011). RP-filter: A path-based triple filtering method
for efficient SPARQL query processing. In Proceedings of the 2011 joint
international semantic technology conference (JIST 2011).

Klyne, G., & Carroll, J. J. (2004). Resource description framework (RDF): Concepts
and abstract syntax. In W3c recommendation, World Wide Web consortium.

Kobilarov, G., Scott, T., Raimond, Y., Oliver, S., Sizemore, C., Smethurst, M., Bizer, C., &
Lee, R. (2009). Media meets semantic web — how the bbc uses dbpedia and
linked data to make connections. In Proceedings of the 6th European semantic
web conference on the semantic web (ESWC’09) (pp. 723–737).

Kuramochi, M., & Karypis, G. (2004). Finding frequent patterns in a large sparse
graph. In SDM.

Mika, P. (2004). Social networks and the semantic web. In Proceedings of
international conference on web intelligence (WI’04) (pp. 285–291).

Neumann, T., & Moerkotte, G. (2011). Characteristic sets: Accurate cardinality
estimation for RDF queries with multiple joins. In Proceedings of the 27th
international conference on data engineering (ICDE 2011).

Neumann, T., & Weikum, G. (2008). RDF-3X: A RISC-style engine for RDF. PVLDB,
1(1), 647–659.

Neumann, T., & Weikum, G. (2009). Scalable join processing on very large RDF
graphs. In Proceedings of the ACM SIGMOD international conference on
management of data (SIGMOD 2009) (pp. 627–640). Springer.

Prud’hommeaux, E., Seaborne, A. (2008). SPARQL query language for RDF. In W3c
recommendation, W3C recommendation.

Punnoose, R., Crainiceanu, A., & Rapp D. (2012). Rya: A scalable RDF triple store for
the clouds. In Proceedings of the 1st international workshop on cloud intelligence
(colocated with VLDB 2012) (Cloud-I 2012).

Redaschi, N., Consortium, U. (2009). UniProt in RDF: tackling data integration and
distributed annotation with the semantic web. In Nature precedings.

Rohloff, K., & Schantz, R. E. (2010). High-performance, massively scalable
distributed systems using the MapReduce software framework: The SHARD
triple-store. In SPLASH workshop on programming support innovations for
emerging distributed applications.

Schmidt, M., Hornung, T., Lausen, G., & Pinkel, C. (2009). SP2Bench: A SPARQL
performance benchmark. In Proceedings of the 25th international conference on
data engineering (ICDE 2009).

Shasha, D., Wang, J. T.- L., & Giugno, R. (2002). Algorithmics and applications of tree
and graph searching. In Proceedings of the twenty-first ACM SIGACT-SIGMOD-
SIGART symposium on principles of database systems (PODS 2002).

Sheridan J. (2010). Linking UK government data. In WWW workshop on linked data
(pp. 1–4).

Tian, Y., McEachin, R. C., Santos, C., States, D. J., & Patel, J. M. (2007). SAGA: A
subgraph matching tool for biological graphs. Bioinformatics, 23(2), 232–239.

Tran, T., & Ladwig, G. (2010). Structure index for RDF data. In Workshop on semantic
data management (SemData@VLDB2010).

Udrea, O., Pugliese, A., & Subrahmanian, V. S. (2007). GRIn: A graph based RDF
index. In Proceedings of the twenty-second AAAI conference on artificial intelligence
(AAAI 2007). AAAI Press.

Weiss, C., Karras, P., & Bernstein, A. (2008). Hexastore: Sextuple indexing for
semantic web data management. PVLDB, 1(1), 1008–1019.

Yan, X., & Han, J. (2002). gspan: Graph-based substructure pattern mining. In
Proceedings of the 2002 IEEE international conference on data mining (ICDM 2002).

Yan, X., Yu, P. S., & Han, J. (2005). Graph indexing based on discriminative frequent
structure analysis. ACM Transactions on Database Systems, 30(4), 960–993.

Zhang, S., Li, S., & Yang, J. (2009). Gaddi: Distance index based subgraph matching in
biological networks. In Proceedings of the 12th international conference on
extending database technology (EDBT 2009).

Zhao, P., & Han, J. (2010). On graph query optimization in large networks. PVLDB,
3(1), 340–351.

Zou, L., Mo, J., Chen, L., Özsu, M. T., & Zhao, D. (2011). gstore: Answering SPARQL
queries via subgraph matching. PVLDB, 4(8), 482–493.

http://refhub.elsevier.com/S0957-4174(14)00048-7/h0115
http://refhub.elsevier.com/S0957-4174(14)00048-7/h0115
http://refhub.elsevier.com/S0957-4174(14)00048-7/h0120
http://refhub.elsevier.com/S0957-4174(14)00048-7/h0120
http://refhub.elsevier.com/S0957-4174(14)00048-7/h0120
http://refhub.elsevier.com/S0957-4174(14)00048-7/h0125
http://refhub.elsevier.com/S0957-4174(14)00048-7/h0125
http://refhub.elsevier.com/S0957-4174(14)00048-7/h0130
http://refhub.elsevier.com/S0957-4174(14)00048-7/h0130
http://refhub.elsevier.com/S0957-4174(14)00048-7/h0130
http://refhub.elsevier.com/S0957-4174(14)00048-7/h0135
http://refhub.elsevier.com/S0957-4174(14)00048-7/h0135
http://refhub.elsevier.com/S0957-4174(14)00048-7/h0135
http://refhub.elsevier.com/S0957-4174(14)00048-7/h0140
http://refhub.elsevier.com/S0957-4174(14)00048-7/h0145
http://refhub.elsevier.com/S0957-4174(14)00048-7/h0145
http://refhub.elsevier.com/S0957-4174(14)00048-7/h0150
http://refhub.elsevier.com/S0957-4174(14)00048-7/h0150
http://refhub.elsevier.com/S0957-4174(14)00048-7/h0150
http://refhub.elsevier.com/S0957-4174(14)00048-7/h0155
http://refhub.elsevier.com/S0957-4174(14)00048-7/h0155
http://refhub.elsevier.com/S0957-4174(14)00048-7/h0160
http://refhub.elsevier.com/S0957-4174(14)00048-7/h0160
http://refhub.elsevier.com/S0957-4174(14)00048-7/h0160
http://refhub.elsevier.com/S0957-4174(14)00048-7/h0165
http://refhub.elsevier.com/S0957-4174(14)00048-7/h0165
http://refhub.elsevier.com/S0957-4174(14)00048-7/h0170
http://refhub.elsevier.com/S0957-4174(14)00048-7/h0170
http://refhub.elsevier.com/S0957-4174(14)00048-7/h0170
http://refhub.elsevier.com/S0957-4174(14)00048-7/h0175
http://refhub.elsevier.com/S0957-4174(14)00048-7/h0175
http://refhub.elsevier.com/S0957-4174(14)00048-7/h0180
http://refhub.elsevier.com/S0957-4174(14)00048-7/h0180
http://refhub.elsevier.com/S0957-4174(14)00048-7/h0180
http://refhub.elsevier.com/S0957-4174(14)00048-7/h0185
http://refhub.elsevier.com/S0957-4174(14)00048-7/h0185
http://refhub.elsevier.com/S0957-4174(14)00048-7/h0190
http://refhub.elsevier.com/S0957-4174(14)00048-7/h0190
http://refhub.elsevier.com/S0957-4174(14)00048-7/h0195
http://refhub.elsevier.com/S0957-4174(14)00048-7/h0195
http://refhub.elsevier.com/S0957-4174(14)00048-7/h0200
http://refhub.elsevier.com/S0957-4174(14)00048-7/h0200

	RG-index: An RDF graph index for efficient SPARQL query processing
	1 Introduction
	2 Related work
	2.1 RDF stores
	2.2 Triple filtering method: RP-filter
	2.3 Frequent graph pattern mining and graph indexing
	2.3.1 Overview of gSpan

	3 Preliminaries
	3.1 RDF and SPARQL
	3.2 Candidate vertex set

	4 RG-index
	4.1 Design of RG-index
	4.2 Physical structure of RG-index
	4.2.1 DFS code representation
	4.2.2 Storage of RG-index

	4.3 Handling the size problem of RG-index
	4.3.1 Discriminative patterns
	4.3.2 Frequent patterns

	5 Building RG-index
	5.1 RDF graph pattern mining using gSpan
	5.1.1 Support for the RDF graph
	5.1.2 Avoiding redundant patterns
	5.1.3 Caching the intermediate results

	6 Triple filtering using RG-index
	6.1 RFLT operator
	6.2 Generating an execution plan with RFLT operators
	6.2.1 Cost function of the RFLT operator
	6.2.2 Output cardinality estimation of the RFLT operator
	6.2.3 Adding RFLT operators

	7 Experimental results
	7.1 RG-index size
	7.2 Query evaluation performance
	7.3 Discussions
	7.3.1 Determining the parameter values
	7.3.2 Workload-aware index building
	7.3.3 Accurate output cardinality estimation

	8 Conclusions and future work
	Acknowledgement
	References

