A Case for Flash Memory SSD in Enterprise Database
Applications

Sang-Won Leef Bongki Moon?

Chanik Parks

fSchool of Information & Communications Engr.

Sungkyunkwan University
Suwon 440-746, Korea
{wonlee,swkim} @ece.skku.ac.kr

§Samsung Electronics Co., Ltd.
San #16 Banwol-Ri
Hwasung-City 445-701, Korea
ci.park@samsung.com

ABSTRACT

Due to its superiority such as low access latency, low en-
ergy consumption, light weight, and shock resistance, the
success of flash memory as a storage alternative for mobile
computing devices has been steadily expanded into personal
computer and enterprise server markets with ever increas-
ing capacity of its storage. However, since flash memory ex-
hibits poor performance for small-to-moderate sized writes
requested in a random order, existing database systems may
not be able to take full advantage of flash memory without
elaborate flash-aware data structures and algorithms. The
objective of this work is to understand the applicability and
potential impact that flash memory SSD (Solid State Drive)
has for certain type of storage spaces of a database server
where sequential writes and random reads are prevalent. We
show empirically that up to more than an order of magni-
tude improvement can be achieved in transaction processing
by replacing magnetic disk with flash memory SSD for trans-
action log, rollback segments, and temporary table spaces.

Categories and Subject Descriptors

H. Information Systems [H.2 DATABASE MANAGE-
MENT]: H.2.2 Physical Design

General Terms

Design, Algorithms, Performance, Reliability

*This work was partly supported by the IT R&D program
of MIC/IITA [2006-S-040-01] and MIC, Korea under ITRC
IITA-2008-(C1090-0801-0046). The authors assume all re-
sponsibility for the contents of the paper.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGMOD’08, June 9-12, 2008, Vancouver, BC, Canada.

Copyright 2008 ACM 978-1-60558-102-6/08/06 ...$5.00.

1075

Jae-Myung Kim¥ Sang-Woo Kim?

‘Department of Computer Science
University of Arizona
Tucson, AZ 85721, U.S.A.
bkmoon @ cs.arizona.edu

YAltibase Corp.
182-13, Guro-dong, Guro-Gu
_Seoul, 152-790, Korea
jmkim @altibase.com

Keywords
Flash-Memory Database Server, Flash-Memory SSD

1. INTRODUCTION

Due to its superiority such as low access latency, low en-
ergy consumption, light weight, and shock resistance, the
success of flash memory as a storage alternative for mobile
computing devices has been steadily expanded into personal
computer and enterprise server markets with ever increas-
ing capacity of its storage. As it has been witnessed in the
past several years, two-fold annual increase in the density
of NAND flash memory is expected to continue until year
2012 [11]. Flash-based storage devices are now considered
to have tremendous potential as a new storage medium that
can replace magnetic disk and achieve much higher perfor-
mance for enterprise database servers [10].

The trend in market is also very clear. Computer hard-
ware manufacturers have already launched new lines of mo-
bile personal computers that did away with disk drives alto-
gether, replacing them with flash memory SSD (Solid State
Drive). Storage system vendors have started lining up their
flash-based solutions in Terabyte-scale targeting large-scale
database servers as one of the main applications.

Adoption of a new technology, however, is often deterred
by lack of in-depth analysis on its applicability and cost-
effectiveness, and is even considered risky when it comes to
mission critical applications. The objective of this work is
to evaluate flash memory SSD as stable storage for database
workloads and identify the areas where flash memory SSD
can be best utilized, thereby accelerating its adoption as
an alternative to magnetic disk and maximizing the benefit
from this new technology.

Most of the contemporary database systems are config-
ured to have separate storage spaces for database tables and
indexes, log data and temporary data. Whenever a trans-
action updates a data object, its log record is created and
stored in stable storage for recoverability and durability of
the transaction execution. Temporary table space stores

temporary data required for performing operations such as
sorts or joins. If multiversion read consistency is supported,
another separate storage area called rollback segments is
created to store previous versions of data objects.

For the purpose of performance tuning as well as recov-
erability, these distinct storage spaces are often created on
physically separate storage devices, so that I/O throughput
can increase, and I/O bottlenecks can be detected and ad-
dressed with more ease. While it is commonly known that
accessing data stored in secondary storage is the main source
of bottlenecks in database processing, high throughput of a
database system cannot be achieved by addressing the bot-
tlenecks only in spaces for tables and indexes but also in
spaces for log, temporary and rollback data.

Recent studies on database availability and architecture
report that writing log records to stable storage is almost
guaranteed to be a significant performance bottleneck [13,
21]. In on-line transaction processing (OLTP) applications,
for example, when a transaction commits, all the log records
created by the transaction have to be force-written to sta-
ble storage. If a large number of concurrent transactions
commit at a rapid rate, the log tail will be requested to be
flushed to disk very often. This will then lengthen the av-
erage wait time of committing transactions and delay the
release of locks further, and eventually increase the overall
runtime overhead substantially.

Accessing data stored in temporary table spaces and roll-
back segments also takes up a significant portion of total
I/0 activities. For example, queries performing a table scan,
join, sort or hash operation are very common in a data ware-
housing application, and processing those queries (except
simple table scans) will require a potentially large amount
of intermediate data to be written to and read from tem-
porary table spaces. Thus, to maximize the throughput of
a database system, it is critical to speed up accessing data
stored in those areas as well as in the data space for tables
and indexes.

Previous work has reported that flash memory exhibits

poor performance for small-to-moderate sized writes requested

in a random order [2] and the best attainable performance
may not be obtained from database servers without elab-
orate flash-aware data structures and algorithms [14]. In
this paper, in contrast, we demonstrate that flash mem-
ory SSD can help improve the performance of transaction
processing significantly, particularly as a storage alternative
for transaction log, rollback segments and temporary table
spaces. To accomplish this, we trace quite distinct data ac-
cess patterns observed from these three different types of
data spaces, and analyze how magnetic disk and flash mem-
ory SSD devices handle such I/O requests, and show how
the overall performance of transaction processing is affected
by them.

While the previous work on in-page logging is targeted at
regular table spaces for database tables and indexes where
small random writes are dominant [14], the objective of this
work is to understand the applicability and potential impact
that flash memory SSD has for the other data spaces where
sequential writes and random reads are prevalent. The key
contributions of this work are summarized as follows.

e Based on a detailed analysis of data accesses that are

1076

traced from a commercial database server, this paper
provides an understanding of I/O behaviors that are
dominant in transaction log, rollback segments, and
temporary table spaces. It also shows that this I/O
pattern is a good match for the dual-channel, super-
block design of flash memory SSD as well as the char-
acteristics of flash memory itself.

This paper presents a quantitative and comparative
analysis of magnetic disk and flash memory SSD with
respect to performance impacts they have on transac-
tional database workloads. We observed more than an
order of magnitude improvement in transaction through-
put and response time by replacing magnetic disk with
flash memory SSD as storage media for transaction log
or rollback segments. In addition, more than a factor
of two improvement in response time was observed in
processing a sort-merge or hash join query by adopting
flash memory SSD instead of magnetic disk for tem-
porary table spaces.

The empirical study carried out in this paper demon-
strates that low latency of flash memory SSD can alle-
viate drastically the log bottleneck at commit time and
the problem of increased random reads for multiversion
read consistency. With flash memory SSD, 1/O pro-
cessing speed may no longer be as serious a bottleneck
as it used be, and the overall performance of query
processing can be much less sensitive to tuning param-
eters such as the unit size of physical I/O. The supe-
rior performance of flash memory SSD demonstrated in
this work will help accelerate adoption of flash mem-
ory SSD for database applications in the enterprise
market, and help us revisit requirements of database
design and tuning guidelines for database servers.

The rest of this paper is organized as follows. Section 2
presents a few key features and architecture of Samsung flash
memory SSD,; and discusses its performance characteristics
with respect to transactional database workloads. Section 3
describes the experimental settings that will be used in the
following sections. In Section 4, we analyze the performance
gain that can be obtained by adopting flash memory SSD
as stable storage for transaction log. Section 5 analyzes the
patterns in which old versions of data objects are written
to and read from rollback segments, and shows how flash
memory SSD can take advantage of the access patterns to
improve access speed for rollback segments and the average
response time of transactions. In Section 6, we analyze the
I/0 patterns of sort-based and hash-based algorithms, and
discuss the impact of flash memory SSD on the algorithms.
Lastly, Section 7 summarizes the contributions of this paper.

2. DESIGN OF SAMSUNG FLASH SSD

The flash memory SSD (Solid State Drive) of Samsung
Electronics is a non-volatile storage device based on NAND-
type flash memory, which is being marketed as a replacement
of traditional hard disk drives for a wide range of comput-
ing platforms. In this section, we first briefly summarize
the characteristics of flash memory as a storage medium for
databases. We then present the architecture and a few key

features of Samsung flash memory SSD, and discuss its per-
formance implications on transactional database workloads.

2.1 Characteristics of Flash Memory

Flash memory is a purely electronic device with no me-
chanically moving parts like disk arms in a magnetic disk
drive. Therefore, flash memory can provide uniform ran-
dom access speed. Unlike magnetic disks whose seek and
rotational delay often becomes the dominant cost of reading
or writing a sector, the time to access data in flash mem-
ory is almost linearly proportional to the amount of data
irrespective of their physical locations in flash memory. The
ability of flash memory to quickly perform a sector read or
a sector (clean) write located anywhere in flash memory is
one of the key characteristics we can take advantage of.

On the other hand, with flash memory, no data item (or a
sector containing the data item) can be updated in place just
by overwriting it. In order to update an existing data item
stored in flash memory, a time-consuming erase operation
must be performed before overwriting. The erase operation
cannot be performed selectively on a particular data item
or sector, but can only be done for an entire block of flash
memory called erase unit containing the data item, which is
much larger (typically 128 KBytes) than a sector. To avoid
performance degradation caused by this erase-before-write
limitation, some of the data structures and algorithms of
existing database systems may well be reconsidered [14].

The read and write speed of flash memory is asymmetric,
simply because it takes longer to write (or inject charge into)
a cell until reaching a stable status than to read the status
from a cell. As will be shown later in this section (Table 1),
the sustained speed of read is almost twice faster than that
of write. This property of asymmetric speed should also be
considered when reviewing existing techniques for database
system implementations.

2.2 Architecture and Key Features

High bandwidth is one of the critical requirements for the
design of flash memory SSD. The dual-channel architecture,
as shown in Figure 1, supports up to 4-way interleaving to
hide flash programming latency and to increase bandwidth
through parallel read /write operations. An automatic inter-
leaving hardware logic is adopted to maximize the interleav-
ing effect with the minimal firmware intervention [18].

ARM7
IXJZ

Flash Flash Memory I
Memory
118! controller Flash Memory I
x16 Host | x33] SRAM
HOST I/F Controller
Flash Flash Memory
- Memory
<> Controller Flash Memory I

1}(32
SRAM

Figure 1: Dual-Channel Architecture of SSD

A firmware layer known as flash translation layer (FTL) [5,

1077

12] is responsible for several essential functions of flash mem-
ory SSD such as address mapping and wear leveling. The
address mapping scheme is based on super-blocks in order
to limit the amount of information required for logical-to-
physical address mapping, which grows larger as the capac-
ity of flash memory SSD increases. This super-block scheme
also facilitates interleaved accesses of flash memory by strip-
ing a super-block of one MBytes across four flash chips. A
super-block consists of eight erase units (or large blocks) of
128 KBytes each. Under this super-block scheme, two erase
units of a super-block are allocated in the same flash chip.

Though flash memory SSD is a purely electronic device
without any moving part, it is not entirely latency free for
accessing data. When a read or write request is given from
a host system, the I/O command should be interpreted and
processed by the SSD controller, referenced logical addresses
should be mapped to physical addresses, and if mapping
information is altered by a write or merge operation, then
the mapping table should be updated in flash memory. With
all these overheads added up, the read and write latency
observed from the recent SSD products is approximately 0.2
msec and 0.4 msec, respectively.

In order to reduce energy consumption, the one-chip con-
troller uses a small amount of SRAM for program code, data
and buffer memory.! The flash memory SSD drives can be
interfaced with a host system through the IDE standard
ATA-5.

2.3 Flash SSD for Database Workload

Typical transactional database workloads like TPC-C ex-
hibit little locality and sequentiality in data accesses, a high
percentage of which are synchronous writes (e.g., forced-
writes of log records at commit time). Such latency hiding
techniques as prefetching and write buffering become less
effective for this type of workload, and the performance of
transactional database applications tends to be more closely
limited by disk latency than disk bandwidth and capac-
ity [24]. Nonetheless, for more than a decade in the past, the
latency of disk has improved at a much slower pace than the
bandwidth of disk, and the latency-bandwidth imbalance is
expected to be even more evident in the future [19].

In this regard, extremely low latency of flash memory
SSD lends itself to being a new storage medium that re-
places magnetic disk and improves the throughput of trans-
action processing significantly. Table 1 shows the perfor-
mance characteristics of some contemporary hard disk and
flash memory SSD products. Though the bandwidth of disk
is still two to three times higher than that of flash memory
SSD, more importantly, the read and write latency of flash
memory SSD is smaller than that of disk by more than an
order of magnitude.

As is briefly mentioned above, the low latency of flash
memory SSD can reduce the average transaction commit
time and improve the throughput of transaction processing
significantly. If multiversion read consistency is supported,
rollback data are typically written to rollback segments se-
quentially in append-only fashion and read from rollback
segments randomly during transaction processing. This pe-

The flash memory SSD drive tested in this paper contains
128 KByte SRAM.

| Storage || hard disk’ | flash SSD¥ |
Average 8.33 ms 0.2 ms (read)
Latency 0.4 ms (write)
Sustained 110 MB/sec | 56 MB/sec (read)
Transfer Rate 32 MB/sec (write)

TDisk: Seagate Barracuda 7200.10 ST3250310AS, average
latency for seek and rotational delay;
¥SSD: Samsung MCAQE32G8APP-0XA drive with
K9WAGO8U1A 16 Gbits SLC NAND chips

Table 1: Magnetic disk vs. NAND Flash SSD

culiar I/O pattern is a good match for the characteristics of
flash memory itself and the super-block scheme of the Sam-
sung flash memory SSD. External sorting is another opera-
tion that can benefit from the low latency of flash memory
SSD, because the read pattern of external sorting is quite
random during the merge phase in particular.

3. EXPERIMENTAL SETTINGS

Before presenting the results from our workload analysis
and performance study in the following sections, we describe
the experimental settings briefly in this section.

In most cases, we ran a commercial database server (one
of the most recent editions of its product line) on two Linux
systems (kernel version 2.6.22), each with a 1.86 GHz In-
tel Pentium dual-core processor and 2 GB RAM. These
two computer systems were identical except that one was
equipped with a magnetic disk drive and the other with a
flash memory SSD drive instead of the disk drive. The disk
drive model was Seagate Barracuda 7200.10 ST3250310AS
with 250 GB capacity, 7200 rpm and SATA interface. The
flash memory SSD model was Samsung Standard Type
MCAQE32G8APP-0XA with 32 GB capacity and 1.8 inch
PATA interface, which internally deploys Samsung
K9WAGO8U1A 16 Gbits SLC NAND flash chips (shown in
Figure 2). These storage devices were connected to the com-
puter systems via a SATA or PATA interface.

(Solid State Disk)

32G Byte

Figure 2: Samsung NAND Flash SSD

When either magnetic disk or flash memory SSD was used
as stable storage for transaction log, rollback segments, or
temporary table spaces, it was bound as a raw device in
order to minimize interference from data caching by the op-
erating system. This is a common way of binding storage

1078

devices adopted by most commercial database servers with
their own caching scheme. In all the experiments, database
tables were cached in memory so that most of 10 activi-
ties were confined to transaction log, rollback segments and
temporary table spaces.

4. TRANSACTION LOG

When a transaction commits, it appends a commit type
log record to the log and force-writes the log tail to stable
storage up to and including the commit record. Even if a no-
force buffer management policy is being used, it is required
to force-write all the log records kept in the log tail to ensure
the durability of transactions [22].

As the speed of processors becomes faster and the memory
capacity increases, the commit time delay due to force-writes
increasingly becomes a serious bottleneck to achieving high
performance of transaction processing [21]. The response
time Tresponse Of a transaction can be modeled as a sum
of CPU time T¢pu, read time Treqq, write time Tiyrite and
commit time Tcommit. Lepu is typically much smaller than
1O time. Even Tycqq and Tyrite become almost negligible
with a large capacity buffer cache and can be hidden by
asynchronous write operations. On the other hand, commit
time Teommit still remains to be a significant overhead, be-
cause every committing transaction has to wait until all of
its log records are force-written to log, which in turn can-
not be done until forced-write operations requested by other
transactions earlier are completed. Therefore, the amount of
commit-time delay tends to increase as the number of con-
current transactions increases, and is typically no less than
a few milliseconds.

Group commit may be used to alleviate the log bottle-
neck [4]. Instead of committing each transaction as it fin-
ishes, transactions are committed in batches when enough
logs are accumulated in the log tail. Though this group
commit approach can significantly improve the throughput
of transaction processing, it does not improve the response
time of individual transactions and does not remove the
commit time log bottleneck altogether.

Log records are always appended to the end of log. If a
separate storage device is dedicated to transaction log, which
is commonly done in practice for performance and recover-
ability purposes, this sequential pattern of write operations
favors not only hard disk but also flash memory SSD. With
no seek delay due to sequential accesses, the write latency
of disk is reduced to only half a revolution of disk spindle
on average, which is equivalent to approximately 4.17 msec
for disk drives with 7200 rpm rotational speed.

In the case of flash memory SSD, however, the write la-
tency is much lower at about 0.4 msec, because flash memory
SSD has no mechanical latency but only a little overhead
from the controller as described in Section 2.3. Even the
no in-place update limitation of flash memory has no nega-
tive impact on the write bandwidth in this case, because log
records being written to flash memory sequentially do not
cause expensive merge or erase operations as long as clean
flash blocks (or erase units) are available. Coupled with the
low write latency of flash memory, the use of flash memory
SSD as a dedicated storage device for transaction log can
reduce the commit time delay considerably.

In the rest of this section, we analyze the performance
gain that can be obtained by adopting flash memory SSD
as stable storage for transaction log. The empirical results
from flash memory SSD drives are compared with those from
magnetic disk drives.

4.1 Simple SQL Transactions

To analyze the commit time performance of hard disk and
flash memory SSD drives, we first ran a simple embedded
SQL program on a commercial database server, which ran
on two identical Linux systems except that one was equipped
with a magnetic disk drive and the other with a flash mem-
ory SSD drive instead of the disk drive. This embedded
SQL program is multi-threaded and simulates concurrent
transactions. Each thread updates a single record and com-
mits, and repeats this cycle of update and commit continu-
ously. In order to minimize the wait time for database table
updates and increase the frequency of commit time forced-
writes, the entire table data were cached in memory. Conse-
quently, the runtime of a transaction excluding the commit
time (i.e., Tepu + Tread + Twrite) Was no more than a few
dozens of microseconds in the experiment. Table 2 shows
the throughput of the embedded SQL program in terms of
transactions-per-seconds (TPS).

no. of concurrent hard disk flash SSD
transactions TPS [%CPU TPS [%CPU

4 178 2.5 2222 28

8 358 4.5 4050 47

16 711 8.5 6274 7

32 1403 20 5953 84

64 2737 38 5701 84

Table 2: Commit-time performance of an embedded
SQL program measured in transactions-in-seconds
(TPS) and CPU utilization

Regarding the commit time activities, a transaction can
be in one of the three distinct states. Namely, a transaction
(1) is still active and has not requested to commit, (2) has
already requested to commit but is waiting for other trans-
actions to complete forced-writes of their log records, or (3)
has requested to commit and is currently force-writing its
own log records to stable storage.

When a hard disk drive was used as stable storage, the
average wait time of a transaction was elongated due to
the longer latency of disk writes, which resulted in an in-
creased number of transactions that were kept in a state of
the second or third category. This is why the transaction
throughput and CPU utilization were both low, as shown in
the second and third columns of Table 2.

On the other hand, when a flash memory SSD drive was
used instead of a hard disk drive, much higher transaction
throughput and CPU utilization were observed, as shown in
the fourth and fifth columns of Table 2. With a much shorter
write latency of flash memory SSD, the average wait time of
a transaction was shortened, and a relatively large number
of transactions were actively utilizing CPU, which in turn
resulted in higher transaction throughput. Note that the
CPU utilization was saturated when the number of concur-

1079

rent transactions was high in the case of flash memory SSD,
and no further improvement in transaction throughput was
observed when the number of concurrent transactions was
increased from 32 to 64, indicating that CPU was a limiting
factor rather than I/0.

4.2 TPC-B Benchmark Performance

In order to evaluate the performance of flash memory SSD
as a storage medium for transaction log in a more harsh envi-
ronment, we ran a commercial database server with TPC-B
workloads created by a workload generation tool. Although
it is obsolete, the TPC-B benchmark was chosen because it
is designed to be a stress test on different subsystems of a
database server and its transaction commit rate is higher
than that of TPC-C benchmark [3]. We used this bench-
mark to stress-test the log storage part of the commercial
database server by executing a large number of small trans-
actions causing significant forced-write activities.

In this benchmark test, the number of concurrent simu-
lated users was set to 20, and the size of database and the
size of database buffer cache of the server were set to 450
MBytes and 500 MBytes, respectively. Note that this set-
ting allows the database server to cache the entire database
in memory, such that the cost of reading and writing data
pages is eliminated and the cost of forced writing log records
remains dominant on the critical path in the overall perfor-
mance. When either a hard disk or flash memory SSD drive
was used as stable storage for transaction log, it was bound
as a raw device. Log records were force-written to the sta-
ble storage in a single or multiple sectors (of 512 bytes) at
a time.

Table 3 summarizes the results from the benchmark test
measured in terms of transactions-per-seconds (TPS) and
CPU utilization as well as the average size of a single log
write and the average time taken to process a single log
write. Since multiple transactions could commit together
as a group (by a group commit mechanism), the frequency
of log writes was much lower than the number of transac-
tions processed per second. Again, due to the group commit
mechanism, the average size of a single log write was slightly
different between the two storage media.

| || hard disk | flash SSD |

Transactions/sec 864 3045
CPU utilization (%) 20 65
Log write size (sectors) 32 30
Log write time (msec) 8.1 1.3

Table 3: Commit-time performance from TPC-B
benchmark (with 20 simulated users)

The overall transaction throughput was improved by a
factor of 3.5 by using a flash memory SSD drive instead of
a hard disk drive as stable storage for transaction log. Evi-
dently the main factor responsible for this improvement was
the considerably lower log write time (1.3 msec on average)
of flash memory SSD, compared with about 6 times longer
log write time of disk. With a much reduced commit time
delay by flash memory SSD, the average response time of
a transaction was also reduced considerably. This allowed

transactions to release resources such as locks and memory
quickly, which in turn helped transactions avoid waiting on
locks held by other transactions and increased the utiliza-
tion of CPU. With flash memory SSD as a logging storage
device, the bottleneck of transaction processing now appears
to be CPU rather than I/O subsystem.

4.3 1/0-Bound vs. CPU-Bound

In the previous sections, we have suggested that the bot-
tleneck of transaction processing might be shifted from I/O
to CPU if flash memory SSD replaced hard disk as a log-
ging storage device. In order to put this proposition to the
test, we carried out further performance evaluation with the
TPC-B benchmark workload.

First, we repeated the same benchmark test as the one
depicted in Section 4.2 but with a varying number of sim-
ulated users. The two curves denoted by Disk-Dual and
SSD-Dual in Figure 3 represent the transaction throughput
observed when a hard disk drive or a flash memory SSD
drive was used as a logging storage device, respectively. Not
surprisingly, this result matches the one shown in Table 3,
and shows the trend more clearly.

In the case of flash memory SSD, as the number of con-
current transactions increased, transaction throughput in-
creased quickly and was saturated at about 3000 transac-
tions per second without improving beyond this level. As
will be discussed further in the following, we believe this
was because the processing power of CPU could not keep
up with a transaction arrival rate any higher than that. In
the case of disk, on the other hand, transaction throughput
increased slowly but steadily in proportion to the number of
concurrent transactions until it reached the same saturation
level. This clearly indicates that CPU was not a limiting
factor in this case until the saturation level was reached.

O @@ @ g
S 4+ o |
o
o o
3 o A
»n . o
9] e
2 2r ¥ e 1
S / A
E / &
/ 47
% T // e SSD-Quad -~
= . o SSD-Dual --#--
- Disk-Quad ——&—-
" ‘ ‘ ‘ ‘ , Disk-Dual e
1 5 10 15 20 25 30 35 40 45 50

Number of virtual users

Figure 3: Commit-time performance of TPC-B
benchmark : I/O-bound vs. CPU-bound

Next, we repeated the same benchmark test again with
a more powerful CPU — 2.4 GHz Intel Pentium quad-core
processor — instead of a 1.86 GHz dual-core processor in the
same setting. The two curves denoted by Disk-Quad and
SSD-Quad in Figure 3 represent the transaction throughput
observed when the quad-core processor was used.

1080

In the case of disk, the trend in transaction throughput
remained almost identical to the one previously observed
when a dual-core processor was used. In the case of flash
memory SSD, the trend of SSD-Quad was also similar to that
of SSD-Dual, except that the saturation level was consider-
ably higher at approximately 4300 transactions per second.

The results from these two benchmark tests speak for
themselves that the processing speed of CPU was a bot-
tleneck in transaction throughput in case of flash memory
SSD, while it was not in the case of disk.

S. MVCC ROLLBACK SEGMENT

Multiversion concurrency control (MVCC) has been adopted
by some of the commercial and open source database sys-
tems (e.g., Oracle, PostgreSQL, SQL Server 2005) as an al-
ternative to the traditional concurrency control mechanism
based on locks. Since read consistency is supported by pro-
viding multiple versions of a data object without any lock,
MVCC is intrinsically non-blocking and can arguably min-
imize performance penalty on concurrent update activities
of transactions. Another advantage of multiversion concur-
rency control is that it naturally supports snapshot isola-
tion [1] and time travel queries [15, 17]. 2

To support multiversion read consistency, however, when
a data object is updated by a transaction, the original data
value has to be recorded in an area known as rollback seg-
ments. The rollback segments are typically set aside in sta-
ble storage to store old images of data objects, and should
not be confused with undo log, because the rollback seg-
ments are not for recovery but for concurrent execution of
transactions. Thus, under multiversion concurrency control,
updating a data object requires writing its before image to
a rollback segment in addition to writing undo and redo log
records for the change.

Similarly, reading a data object can be somewhat costlier
under the multiversion concurrency control. When a trans-
action reads a data object, it needs to check whether the
data object has been updated by other transactions, and
needs to fetch an old version from a rollback segment if nec-
essary. The cost of this read operation may not be trivial,
if the data object has been updated many times and fetch-
ing its particular version requires search through a long list
of versions of the data object. Thus, it is essential to pro-
vide fast access to data in rollback segments so that the
performance of database servers supporting MVCC are not
hindered by increased disk 1/O activities [16].

In this section, we analyze the patterns in which old ver-
sions of data objects are written to and read from rollback
segments, and show how flash memory SSD can take ad-
vantage of the access patterns to improve access speed for
rollback segments and the average response time of transac-
tions.

5.1 Understanding the MVCC Write

When a transaction updates tuples, it stores the before
images of the updated tuples in a block within a rollback

2 As opposed to the ANSI SQL-92 isolation levels, the snap-
shot isolation level exhibits none of the anomalies that the
SQL-92 isolation levels prohibit. Time travel queries allow
you to query a database as of a certain time in the past.

segment or an extent of a rollback segment. When a trans-
action is created, it is assigned to a particular rollback seg-
ment, and the transaction writes old images of data objects
sequentially into the rollback segment. In the case of a com-
mercial database server we tested, it started with a default
number of rollback segments and added more rollback seg-
ments as the number of concurrent transactions increased.

Figure 4 shows the pattern of writes we observed in the
rollback segments of a commercial database server process-
ing a TPC-C workload. The x and y axes in the figure
represent the timestamps of write requests and the logical
sector addresses directed by the requests. The TPC-C work-
load was created for a database of 120 MBytes. The rollback
segments were created in a separate disk drive bound as a
raw device. This disk drive stored nothing but the rollback
segments. While Figure 4(a) shows the macroscopic view of
the write pattern represented in a time-address space, Fig-
ure 4(b) shows more detailed view of the write pattern in a
much smaller time-address region.

The multiple slanted line segments in Figure 4(b) clearly
demonstrate that each transaction writes sequentially into
its own rollback segment in the append-only fashion, and
concurrent transactions generate multiple streams of such
write traffic in parallel. Each line segment spanned a sepa-
rate logical address space that was approximately equivalent
to 2,000 sectors or one MBytes. This is because a new extent
of one MBytes was allocated, every time a rollback segment
ran out of the space in the current extent. The length of
a line segment projected on the horizontal (time) dimen-
sion varied slightly depending on how quickly transactions
consumed the current extent of their rollback segment.

The salient point of this observation is that consecutive
write requests made to rollback segments were almost always
apart by approximately one MBytes in the logical address
space. If a hard disk drive were used as storage for rollback
segments, each write request to a rollback segment would
very likely have to move the disk arm to a different track.
Thus, the cost of recording rollback data for MVCC would
be significant due to excessive seek delay of disk.

Flash memory SSD undoubtedly has no such problem as
seek delay, because it is a purely electronic device with
extremely low latency. Furthermore, since old images of
data objects are written to rollback segments in append-
only fashion, the no in-place update limitation of flash mem-
ory has no negative effect on the write performance of flash
memory SSD as a storage device for rollback segments. Of
course, a potential bottleneck may come up, if no free block
(or clean erase unit) is available when a new rollback seg-
ment or an extent is to be allocated. Then, a flash block
should be reclaimed from obsolete ones, which involves costly
erase and merge operations for flash memory. If this recla-
mation process happens to be on the critical path of transac-
tion execution, it may prolong the response time of a trans-
action. However, the reclamation process was invoked in-
frequently only when a new rollback segment or an extent
was allocated. Consequently, the cost of reclamation was
amortized over many subsequent write operations, affecting
the write performance of flash memory SSD only slightly.

Note that there is a separate stream of write requests that
appear at the bottom of Figure 4(a). These write requests
followed a pattern quite different from the rest of write re-

1081

quests, and were directed to an entirely separate, narrow
area in the logical address space. This is where metadata of
rollback segments were stored. Since the metadata stayed in
the fixed region of the address space, the pattern of writes di-
rected to this area was in-place updates rather than append-
only fashion. Due to the no in-place update limitation of
flash memory, in-place updates of metadata would be costly
for flash memory SSD. However, its negative effect was in-
significant in the experiment, because the volume of meta-
data updates was relatively small.

Overall, we did not observe any notable difference between
disk and flash memory SSD in terms of write time for roll-
back segments. In our TPC-C experiment, the average time
for writing a block to a rollback segment was 7.1 msec for
disk and 6.8 msec for flash memory SSD.

5.2 MVCC Read Performance

As is mentioned in the beginning of this section, another
issue that may have to be addressed by database servers with
MVCC is an increased amount of I/O activities required to
support multiversion read consistency for concurrent trans-
actions. Furthermore, the pattern of read requests tends to
be quite random. If a data object has been updated by other
transactions, the correct version must be fetched from one
of the rollback segments belonging to the transactions that
updated the data object. At the presence of long-running
transactions, the average cost of read by a transaction can
get even higher, because a long chain of old versions may
have to be traversed for each access to a frequently updated
data object, causing more random reads [15, 20, 23].

The superior read performance of flash memory has been
repeatedly demonstrated for both sequential and random
access patterns (e.g., [14]). The use of flash memory SSD
instead of disk can alleviate the problem of increased ran-
dom read considerably, especially by taking advantage of
extremely low latency of flash memory.

To understand the performance impact of MVCC read
activities, we ran a few concurrent transactions in snapshot
isolation mode on a commercial database server following
the scenario below.

(1) Transaction Ti performs a full scan of a table with
12,500 data pages of 8 KBytes each. (The size of the
table is approximately 100 MBytes.)

(2) Each of three transactions T>, T3 and T4 updates each
and every tuple in the table one after another.

(3) Transaction 71 performs a full scan of the table again.

The size of database buffer cache was set to 100 MBytes in
order to cache the entire table in memory, so that the effect
of MVCC I/O activities could be isolated from the other
database accesses.

Figure 5 shows the pattern of reads observed at the last
step of the scenario above when 77 scanned the table for the
second time. The z and y axes in the figure represent the
timestamps of read requests and the logical addresses of sec-
tors in the rollback segments to be read by the requests. The
pattern of read was clustered but randomly scattered across
quite a large logical address space of about one GBytes.
When each individual data page was read from the table,

800

700

600

500

400

300

200

100

Logical sector address (x1000)

600

200
Time (second)
(a) Macroscopic view

300 400 500

370

365

360

355

Logical sector address (x1000)

350 . L .
50 100 150 200 250

Time (second)
(b) Microscopic view

300 350 400

Figure 4: MVCC Write Pattern from TPC-C Benchmark (in TimexAddress space)

2000

1500 |

1000 F— - -

500 r-

Logical sector address (x1000)

150 200 250 300
Time (second)

350

Figure 5: MVCC Read Pattern from Snapshot Iso-
lation scenario (in Timex Address space)

T had to fetch old versions from all three rollback segments
(or extents) assigned to transactions T>, T3 and Ty to find
a transactionally consistent version, which in this case was
the original data page of the table before it was updated by
the three transactions.

| || hard disk | flash SSD |

of pages read 39,703 40,787
read time 328s 21s
CPU time 3s 3s

elapsed time 351.0s 23.6s

Table 4: Undo data read performance

We measured actual performance of the last step of T3
with a hard disk or a flash memory SSD drive being used
as a storage medium for rollback segments. Table 4 summa-
rizes the performance measurements obtained from this test.
Though the numbers of pages read were slightly different
between the cases of disk and flash memory SSD (presum-
ably due to subtle difference in the way old versions were

1082

created in the rollback segments), both the numbers were
close to what amounts to three full scans of the database
table (3 x 12,500 = 37,500 pages). Evidently, this was be-
cause all three old versions had to be fetched from rollback
segments, whenever a transactionally consistent version of
a data page was requested by 77 running in the snapshot
isolation mode.

Despite a slightly larger number of page reads, flash mem-
ory SSD achieved more than an order of magnitude reduc-
tion in both read time and total elapsed time for this pro-
cessing step of Th1, when compared with hard disk. The
average time taken to read a page from rollback segments
was approximately 8.2 msec with disk and 0.5 msec with
flash memory SSD. The average read performance observed
in this test was consistent with the published characteristics
of the disk and the flash memory SSD we used in this ex-
periment. The amount of CPU time remained the same in
both the cases.

6. TEMPORARY TABLE SPACES

Most database servers maintain separate temporary table
spaces that store temporary data required for performing
operations such as sorts or joins. I/O activities requested
in temporary table spaces are typically bursty in volume
and are performed in the foreground. Thus, the processing
time of these I/O operations on temporary tables will have
direct impact on the response time of individual queries or
transactions. In this section, we analyze the I/O patterns
of sort-based and hash-based algorithms, and discuss the
impact of flash memory SSD on the algorithms.

6.1 External Sort

External sort is one of the core database operations that
have been extensively studied and implemented for most
database servers, and many query processing algorithms rely
on external sort. A sort-based algorithm typically partitions
an input data set into smaller chunks, sorts the chunks (or
runs) separately, and then merges them into a single sorted
file. Therefore, the dominant pattern of 1/O requests from
a sort-based algorithm is sequential write (for writing sorted
runs) followed by random read (for merging runs) [8].

read | read |
450 - write write
400 q
g 350 g]
=} =}
= =
o 300 [@ B
8 8
kS] kS]
T 250] g
s s
8 200 f 8 g
@ @
g g
S 150 g |
o o
))
100 [T
50 H B
ol
0 20 40 60 80 100 120 140 40 60 80 100 120 140
Time (second) Time (second)
(a) Hard disk (b) Flash memory SSD
Figure 6: IO pattern of External Sort (in TimexAddress space)
300 [r — . . —
Disk -—-&-- Disk -~
SSD - @ SSD A
3 i
\ 250 | 1
250 [] :
\ \
\\\ |
T) 5 200 i J
@ y @ |
£ 200 y q 2z |
g ' g |
E & o E |
15 o P T 5 150 | » i
5 . . E \
w w \
100 & e, g
\
LN
100 | P NS N RN
- @
T 50 a e -
I [o - - T
e & Bobpn R o a
50 -7 L L L L L L L 1 L L L L L L L L
2 16 32 48 64 80 96 112 128 1 3 5 7 9 " 13 15
Cluster Size in Merge Step (KB) Buffer Size (MB)

(a) Varying cluster size
(buffer cache size fixed at 2 MB)

Figure 7: External Sort Performance :

To better understand the I/O pattern of external sort,
we ran a sort query on a commercial database server, and
traced all 1/O requests made to its temporary table space.
This query sorts a table of two million tuples (approximately
200 MBytes) using a buffer cache of 2 MBytes assigned to
this session by the server. Figure 6 illustrates the I/O pat-
tern of the sort query observed (a) from a temporary table
space created on a hard disk drive and (b) from a tem-
porary table space created on a flash memory SSD drive.
A clear separation of two stages was observed in both the
cases. When sorted runs were created during the first stage
of sort, the runs were written sequentially to the temporary
table space. In the second stage of sort, on the other hand,
tuples were read from multiple runs in parallel to be merged,
leading to random reads spread over the whole region of the
time-address space corresponding to the runs.

Another interesting observation that can be made here is
different ratios between the first and second stages of sort
with respect to execution time. In the first stage of sort for
run generation, a comparable amount of time was spent in

1083

(b) Varying buffer size
(cluster size fixed at 64 KB for disk and at 2 KB for SSD)

Cluster size vs. Buffer cache size

each case of disk and flash memory SSD used as a storage
device for temporary table spaces. In contrast, in the sec-
ond stage of sort for merging runs, the amount of time spent
on this stage was almost an order of magnitude shorter in
the case of flash memory SSD than that in the case of disk.
This is because, due to its far lower read latency, flash mem-
ory SSD can process random reads much faster than disk,
while the processing speeds of these two storage media are
comparable for sequential writes.

Previous studies have shown that the unit of I/O (known
as cluster) has a significant impact on sort performance be-
yond the effect of read-ahead and double buffering [8]. Be-
cause of high latency of disk, larger clusters are generally
expected to yield better sort performance despite the lim-
ited fan-out in run generation and the increased number of
merge steps. In fact, it is claimed that the optimal size of
cluster has steadily increased roughly from 16 or 32 KBytes
to 128 KBytes or even larger over the past decade, as the
gap between latency and bandwidth improvement has be-
come wider [7, 9].

To evaluate the effect of cluster size on sort performance,
we ran the sort query mentioned above on a commercial
database server with a varying size of cluster. The buffer
cache size of the database server was set to 2 MBytes for
this query. The input table was read from the database
table space, and sorted runs were written to or read from
a temporary table space created on a hard disk drive or a
flash memory SSD drive. Figure 7(a) shows the elapsed time
taken to process the sort query excluding the time spent
on reading the input table from the database table space.
In other words, the amount of time shown in Figure 7(a)
represents the cost of processing the I/O requests previously
shown in Figure 6 with a different size of cluster on either
disk or flash memory SSD.

The performance trend was quite different between disk
and flash memory SSD. In the case of disk, the sort per-
formance was very sensitive to the cluster size, steadily im-
proving as cluster became larger in the range between 2 KB
and 64 KB. The sort performance then became a little worse
when the cluster size grew beyond 64 KB. In the case of flash
memory SSD, the sort performance was not as much sensi-
tive to the cluster size, but it deteriorated consistently as
the cluster size increased, and the best performance was ob-
served when the smallest cluster size (2 KBytes) was used.

Though it is not shown in Figure 7(a), for both disk and
flash memory SSD, the amount of time spent on run gener-
ation was only a small fraction of total elapsed time and it
remained almost constant irrespective of the cluster size. It
was the second stage for merging runs that consumed much
larger share of sort time and was responsible for the distinct
trends of performance between disk and flash memory SSD.
Recall that the use of a larger cluster in general improves
disk bandwidth but increases the amount of I/O by reduc-
ing the fan-out for merging sorted runs. In the case of disk,
when the size of cluster was increased, the negative effect of
reduced fan-out was overridden by considerably improved
bandwidth. In the case of flash memory SSD, however,
bandwidth improvement from using a larger cluster was not
enough to make up the elongated merge time caused by an
increased amount of I/O due to reduced fan-out.

Apparently from this experiment, the optimal cluster size
of flash memory SSD is much smaller (in the range of 2 to 4
KBytes) than that of disk (in the range of 64 to 128 KBytes).
Therefore, if flash memory SSD is to be used as a storage
medium for temporary table spaces, a small block should be
chosen for cluster so that the number of steps for merging
sorted runs is reduced. Coupled with this, the low latency of
flash memory SSD will improve the performance of external
sort quite significantly, and keep the upperbound of an input
file size that can be externally sorted in two passes higher
with a given amount of memory.

Figure 7(b) shows the elapsed time of the same external
sort executed with a varying amount of buffer cache. The
same experiment was repeated with a disk drive and a flash
memory SSD drive as a storage device for temporary table
space. The cluster size was set to 64 KBytes for disk and
2 KBytes for flash memory SSD, because these cluster sizes
yielded the best performance in Figure 7(a). Evidently, in
both the cases, the response time of external sort improved
consistently as the size of buffer cache grew larger, until its
effect became saturated. In all the cases of buffer cache size,

1084

flash memory SSD outperformed disk — by at least a factor
of two when the buffer cache was no larger than 20% of the
input table size.

6.2 Hash

Hashing is another core database operation frequently used
for query processing. A hash-based algorithm typically par-
titions an input data set by building a hash table in disk
and processes each hash bucket in memory. For example, a
hash join algorithm processes a join query by partitioning
each input table into hash buckets using a common hash
function and performing the join query bucket by bucket.

Both sort-based and hash-based algorithms are similar in
that they divide an input data set into smaller chunks and
process each chunk separately. Other than that, sort-based
and hash-based algorithms are in principle quite opposite
in the way an input data set is divided and accessed from
secondary storage. In fact, the duality of hash and sort
with respect to their I/O behaviors has been well studied
in the past [8]. While the dominant I/O pattern of sort is
sequential write (for writing sorted runs) followed by random
read (for merging runs), the dominant I/O pattern of hash is
said to be random write (for writing hash buckets) followed
by sequential read (for probing hash buckets).

If this is the case in reality, the build phase of a hash-based
algorithm might be potentially problematic for flash mem-
ory SSD, because the random write part of hash I/O pattern
may degrade the overall performance of a hash operation
with flash memory SSD. To assess the validity of this argu-
ment, we ran a hash join query on a commercial database
server, and traced all I/O requests made to a temporary ta-
ble space. This query joins two tables of two million tuples
(approximately 200 MBytes) each using a buffer cache of 2
MBytes assigned to this session by the server. Figures 8(a)
and 8(b) show the I/O patterns and response times of the
hash join query performed with a hard disk drive and a flash
memory SSD drive, respectively.

Surprisingly the I/O pattern we observed from this hash
join was entirely opposite to what was expected as a dom-
inant pattern suggested by the discussion about the dual-
ity of hash and sort. The most surprising and unexpected
I/O pattern can be seen in the first halves of Figures 8(a)
and 8(b). During the first (build) phase, both input tables
were read and partitioned into multiple (logical) buckets in
parallel. As shown in the figures, however, the sectors which
hash blocks were written to were somehow located in a con-
secutive address space with only a few outliers, as if they
were written in append-only fashion. What we observed
from this phase of a hash join indeed was similarity rather
than duality of hash and sort algorithms with respect to
their I/O behaviors.

Since the internal implementation of this database sys-
tem is opaque to us, we cannot explain exactly where this
idiosyncratic I/O behavior comes from for processing a hash
join. Our conjecture is that when a buffer page becomes full,
it is flushed into a data block in the temporary table space
in append-only fashion no matter which hash bucket the
page belongs to, presumably because the size of each hash
partition (or bucket) cannot be predicted accurately. Then,
the affinity between temporary data blocks and hash buck-
ets can be maintained via chains of links or an additional

re_ad'

= 800 write x
o
S 700 -
X
@ 600 -
o
g 500
<
5 400 f
8
@ 300t
©
L 200 r e
()]
(o]
= 100 [4

0 100 200 300 400 500 600

Time (second)
(a) Hash Join with disk

700

600

500

400

300

200

Logical sector address (x1000)

100

read
writel

600 800
Time (second)
(c) Sort-Merge Join with disk

200 400 1000 1200 1400

read
write x

800 r
700 r
600 r
500 r
400
300 r

200 r o

Logical sector address (x1000)

100 4~

300 400 500 600
Time (second)
(b) Hash Join with SSD

100 200

read

700 write x

600
500
400
300

200

Logical sector address (x1000)

100

600 800 1000 1200 1400
Time (second)
(d) Sort-Merge Join with SSD

200 400

Figure 8: IO Patterns of Hash Join and Sort-Merge Join

level of indirection. We believe this explains why the read
requests during the second (probe) phase of hash join was
randomly scattered rather than sequential.

Whatever the reason is for this implementation of hashing,
the net effect is quite favorable for flash memory SSD. As
Figures 8(a) and 8(b) show, the average response time of
the hash join was 661.1 seconds with disk and 226.0 seconds
with flash memory SSD.

Now that the dominant I/O pattern of both hash and sort
is sequential write followed by random read, it is not difficult
to expect a similar performance trend between disk and flash
memory SSD for a sort-merge join query as well. From the
same experiment repeated for a sort-merge query on the
same commercial database server, the average response time
of the sort-merge join was 1452.7 seconds with disk and 224.7
seconds with flash memory SSD, as shown in Figures 8(c)
and 8(d).

When the hash join and sort-merge join queries were ex-
ecuted with disk, the response time of hash join was about
twice faster than that of sort-merge join. This result con-
curs to some extent with the previous comparative study
arguing that sort-merge join is mostly obsolete with a few
exceptions [6]. On the other hand, when the hash join and
sort-merge join queries were executed with flash memory

1085

SSD, their response times were almost identical. This evi-
dence may not be strong enough to claim that sort-merge
join is better suited than hash join with flash memory SSD,
but it certainly warrants a fresh new look at the issue all
over again.

7. CONCLUSIONS

We have witnessed a chronic imbalance in performance
between processors and storage devices over a few decades
in the past. Although the capacity of magnetic disk has
improved quite rapidly, there still exists a significant and
growing performance gap between magnetic disk and CPU.
Consequently, I/O performance has become ever more crit-
ical in achieving high performance of database applications.

Most contemporary database systems are configured to
have separate storage spaces for database tables and indexes,
transaction log, rollback segments and temporary data. The
overall performance of transaction processing cannot be im-
proved just by optimizing I/O for tables and indexes, but
also by optimizing it for the other storage spaces as well.
In this paper, we demonstrate the burden of processing I/O
requests for transaction log, rollback and temporary data is
substantial and can become a serious bottleneck for transac-

tion processing. We then show that flash memory SSD, as a
storage alternative to magnetic disk, can alleviate this bot-

http://www.research.microsoft.com/ gray, January
2007.

tleneck drastically, because the access patterns dominant in [11] Chang-Gyu Hwang. Nanotechnology Enables a New
the storage spaces for transaction log, rollback and tempo- Memory Growth Model. Proceedings of the IEEE,
rary data can best utilize the superior characteristics of flash 91(11):1765-1771, November 2003.

memory such as extremely low read and write latency with- [12] Intel. Understanding the Flash Translation Layer
out being hampered by the no in-place update limitation of (FTL) Specification. Application Note AP-684, Intel
flash memory. Corporation, December 1998.

In our experiments, we have observed more than an or- [13] Edmond Lau and Samuel Madden. An Integrated
der of magnitude improvement in transaction throughput Approach to Recovery and High Availability in an
and response time by replacing a magnetic disk drive with Updatable, Distributed Data Warehouse. In
a flash memory SSD drive for transaction log or rollback Proceedings of VLDB, pages 703-714, Seoul, Korea,
segments. We have also observed more than a factor of two September 2006.
improvement in response time for processing a sort-merge [14] Sang-Won Lee and Bongki Moon. Design of
or hash join query by adopting a flash memory SSD drive Flash-Based DBMS: An In-Page Logging Approach.
instead of a magnetic disk drive for temporary table spaces. In Proceedings of the ACM SIGMOD, pages 5566,
We believe that a strong case has been made out for flash Beijing, China, June 2007.
memory SSD, and due attentlo.n should b(? p.ald to it in all [15] David B. Lomet, Roger S. Barga, Mohamed F.
aspects of database system design to maximize the benefit Mokbel. G Sheealov. Rui W. dv

. okbel, German Shegalov, Rui Wang, and Yunyue
from this new technology. Zhu. Transaction Time Support Inside a Database
Engine. In Proceedings of ICDE, pages 35-44, Atlanta,
8. REFERENCES GA. Aoril 2006,

(1] Hal Berenson, Philip A. Bernstein, Jim Gray, Jim [16] David T. McWherter, Bianca Schroeder, Anastassia
Melton, Elizabeth J. O’Neil, and Patrick E. O’Neil. A Ailamaki, and Mor Harchol-Balter. Priority
Critique of ANSI SQL Isolation Levels. In Proceedings Mechanisms for OLTP and Transactional Web
of the ACM SIGMOD, pages 1-10, San Jose, CA, May Applications. In Proceedings of ICDE, pages 535-546,
1995. Boston, MA, March 2004.

[2] Andrew Birrell, Michael Isard, Chuck Thacker, and [17] Oracle. Oracle Flashback Technology.

Ted Wobbe. A Design for High-Performance Flash http://www.oracle.com/technology/deploy /-
Disks. Technical Report MSR-TR-2005-176, Microsoft availability /htdocs/Flashback_Overview.htm,
Research, December 2005. 2007.

[3] Transaction Processing Performance Council. TPC [18] Chanik Park, Prakash Talawar, Daesik Won,
Benchmark. http://www.tpc.org/. MyungJin Jung, JungBeen Im, Suksan Kim, and

[4] David J. DeWitt, Randy H. Katz, Frank Olken, Youngjoon Choi. A High Performance Controller for
Leonard D. Shapiro, Michael Stonebraker, and NAND Flash-based Solid State Disk (NSSD). In The
David A. Wood. Implementation Techniques for Main 21st IEEE Non-Volatile Semiconductor Memory
Memory Database Systems. In Proceedings of the Workshop (NVSMW), Monterey, CA, February 2006.
ACM SIGMOD, pages 1-8, Boston, MA, June 1984. [19] David A. Patterson. Latency Lags Bandwidth.

[5] Eran Gal and Sivan Toledo. Mapping Structures for Communications of the ACM, 47(10):71-75, October
Flash Memories: Techniques and Open Problems. In 2004.

International Conference on Software - Science, [20] Michael Stonebraker. The Design of the POSTGRES
Technology & Engineering (SwSTE’05), Herzelia, Storage System. In Proceedings of VLDB, pages
Israel, February 2005. 289-300, Brighton, England, September 1987.

[6] Goetz Graefe. Sort-Merge-Join: An Idea Whose Time [21] Michael Stonebraker, Samuel Madden, Daniel J.
Has(h) Passed? In Proceedings of ICDE, pages Abadi, Stravros Harizopoulos, Nabil Hachem, and Pat
406-417, Houston, TX, February 1994. Helland. The End of an Architectural Era (It’s Time

[7] Goetz Graefe. The Five-minute Rule Twenty Years for a Complete Rewrite). In Proceedings of VLDB,
Later, and How Flash Memory Changes the Rules. In pages 289-300, Vienna, Austria, September 2007.
Third International Workshop on Data Management [22] Theo Hirder and Andreas Reuter. Principles of
on New Hardware (DAMON2007), Beijing, China, Transaction-Oriented Database Recovery. ACM
June 2007. Computing Survey, 15(4):287-317, December 1983.

[8] Goetz Graefe, Ann Linville, and Leonard D. Shapiro. [23] Kimberly L. Tripp and Neal Graves. SQL Server 2005
Sort versus Hash Revisited. IEEE Transactions on Row Versioning-based Transaction Isolation. Microsoft
Knowledge and Data Engineering, 6(6):934-944, SQL Server Technical article, July 2006.

December 1994. [24] Chi Zhang, Xiang Yu, Arvind Krishnamurthy, and

[9] Jim Gray. Rules of Thumb in Data Engineering. In Randolph Y. Wang. Configuring and Scheduling an
Proceedings of ICDE, pages 3-12, San Diego, CA, Eager-Writing Disk Array for a Transaction
March 2000. Processing Workload. In FAST02, January 2002.

[10] Jim Gray and Bob Fitzgerald. Flash Disk

Opportunity for Server-Applications.

1086

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

